The Error Probability of Generalized Perfect Codes via the Meta-Converse
Autor: | Albert Guillen i Fabregas, Sergio Verdu, Gonzalo Vazquez-Vilar |
---|---|
Přispěvatelé: | European Commission, Ministerio de Economía y Competitividad (España), Guillen i Fabregas, Albert [0000-0003-2795-1124], Apollo - University of Cambridge Repository |
Rok vydání: | 2019 |
Předmět: |
FOS: Computer and information sciences
Perfect codes perfect codes Hamming bound Computer Science - Information Theory channel coding Finite blocklength analysis 02 engineering and technology Data_CODINGANDINFORMATIONTHEORY finite blocklength analysis Library and Information Sciences Lossy compression Upper and lower bounds rate distortion theory Separable space Quasi-perfect codes Rate distortion theory Probability of error Converse hypothesis testing 0202 electrical engineering electronic engineering information engineering joint source-channel coding Joint source-channel coding Mathematics Probability measure Discrete mathematics Telecomunicaciones Information Theory (cs.IT) maximum likelihood decoding Maximum likelihood decoding 020206 networking & telecommunications Shannon theory Channel coding Computer Science Applications Hypothesis testing meta-converse Meta-converse quasi-perfect codes Information Systems Coding (social sciences) |
Zdroj: | e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid instname IEEE Transactions on Information Theory |
DOI: | 10.1109/TIT.2019.2906227 |
Popis: | We introduce a definition of perfect and quasi-perfect codes for symmetric channels parametrized by an auxiliary output distribution. This notion generalizes previous definitions of perfect and quasi-perfect codes and encompasses maximum distance separable codes. The error probability of these codes, whenever they exist, is shown to coincide with the estimate provided by the meta-converse lower bound. We illustrate how the proposed definition naturally extends to cover almost-lossless source-channel coding and lossy compression. Submitted to IEEE Transactions on Information Theory |
Databáze: | OpenAIRE |
Externí odkaz: |