On the stability of some systems of exponential difference equations
Autor: | Garyfalos Papaschinopoulos, Nikolaos Psarros, C. J. Schinas |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
General Mathematics
lcsh:T57-57.97 010102 general mathematics Mathematical analysis asymptotic behaviour Absolute value difference equations 01 natural sciences biological dynamics Exponential type global stability Exponential function 010101 applied mathematics centre manifold Exponential stability Stability theory lcsh:Applied mathematics. Quantitative methods Uniqueness 0101 mathematics Eigenvalues and eigenvectors Mathematics Linear stability |
Zdroj: | Opuscula Mathematica, Vol 38, Iss 1, Pp 95-115 (2018) |
ISSN: | 1232-9274 |
Popis: | In this paper we prove the stability of the zero equilibria of two systems of difference equations of exponential type, which are some extensions of an one-dimensional biological model. The stability of these systems is investigated in the special case when one of the eigenvalues is equal to -1 and the other eigenvalue has absolute value less than 1, using centre manifold theory. In addition, we study the existence and uniqueness of positive equilibria, the attractivity and the global asymptotic stability of these equilibria of some related systems of difference equations. |
Databáze: | OpenAIRE |
Externí odkaz: |