Predictive Modelling Techniques in Sediment Yield and Hydrological Modelling

Autor: Adesoji T. Jaiyeola, Adeyemo, Josiah
Jazyk: angličtina
Rok vydání: 2015
Předmět:
DOI: 10.5281/zenodo.1109587
Popis: This paper presents an extensive review of literature relevant to the modelling techniques adopted in sediment yield and hydrological modelling. Several studies relating to sediment yield are discussed. Many research areas of sedimentation in rivers, runoff and reservoirs are presented. Different types of hydrological models, different methods employed in selecting appropriate models for different case studies are analysed. Applications of evolutionary algorithms and artificial intelligence techniques are discussed and compared especially in water resources management and modelling. This review concentrates on Genetic Programming (GP) and fully discusses its theories and applications. The successful applications of GP as a soft computing technique were reviewed in sediment modelling. Some fundamental issues such as benchmark, generalization ability, bloat, over-fitting and other open issues relating to the working principles of GP are highlighted. This paper concludes with the identification of some research gaps in hydrological modelling and sediment yield.
{"references":["P. G. Griffiths, R. Hereford, and R. H. Webb, \"Sediment yield and\nrunoff frequency of small drainage basins in the Mojave Desert,\nCalifornia and Nevada,\" ed, 2006.","M. J. Bender, L. F. Sawatsky, D. Long, and P. Anderson, A strategy for\ndetermining acceptable sediment yield for reclaimed mine lands. Italy:\nUNESCO, 2005.","R. Loch and D. Silburn, \"Constraints to sustainability—soil erosion,\"\nSustainable Crop Production in the Sub-tropics: an Australian\nPerspective. QDPI, 1996.","M. Nasseri, A. Moeini, and M. Tabesh, \"Forecasting monthly urban\nwater demand using Extended Kalman Filter and Genetic\nProgramming,\" Expert Systems with Applications, vol. 38, pp. 7387-\n7395, 6// 2011.","D. P. Loucks and E. V. Beek, An introduction to methods,models,and\napplication., 2005.","W. S. Merritt, R. A. Letcher, and A. J. Jakeman, \"A review of erosion\nand sediment transport models,\" Environmental Modelling & Software,\nvol. 18, pp. 761-799, 2003.","H. Wheater, A. Jakeman, and K. Beven, \"Progress and directions in\nrainfall-runoff modelling,\" 1993.","A. J. Jakeman, T. R. Green, S. G. Beavis, L. Zhang, C. R. Dietrich, and\nP. F. Crapper, \" Modelling upland and in-stream erosion, sediment and\nphosphorus transport in a large catchment,\" Hydrological Processes vol.\n13, pp. 745–752, 1999.","M. Kouli, P. Soupios, and F. Vallianatos, \"Soil erosion prediction using\nthe revised universal soil loss equation (RUSLE) in a GIS framework,\nChania, Northwestern Crete, Greece,\" Environmental Geology, vol. 57,\npp. 483-497, 2009.\n[10] V. Garg, \"Modeling catchment sediment yield: a genetic programming\napproach,\" Natural Hazards, 2011.\n[11] S. Sorooshian, \"Parameter estimation, model identification, and model\nvalidation: conceptual-type models,\" in Recent advances in the modeling\nof hydrologic systems, ed: Springer, 1991, pp. 443-467.\n[12] M. B. Abbott, J. C. Bathurst, J. A. Cunge, P. E. O'Connell, and J.\nRasmussen, \"An introduction to the European Hydrological System—\nSysteme Hydrologique Europeen, SHE. 1. History and philosophy of a\nphysically-based, distributed modelling system,\" Journal ofHydrology,\nvol. 87, pp. 45–59., 1986.\n[13] A. Jakeman and G. Hornberger, \"How much complexity is warranted in\na rainfall‐runoff model?,\" Water Resources Research, vol. 29, pp. 2637-\n2649, 1993.\n[14] R. C. Spear, \"Large simulation models: calibration, uniqueness and\ngoodness of fit,\" Environmental Modelling & Software, vol. 12, pp. 219-\n228, 1997.\n[15] F. Kleissen, M. Beck, and H. Wheater, \"The identifiability of conceptual\nhydrochemical models,\" Water Resources Research, vol. 26, pp. 2979-\n2992, 1990.\n[16] M. B. Beck, \"Water quality modeling: a review of the analysis of\nuncertainty,\" Water Resources Research, vol. 23, pp. 1393-1442, 1987.\n[17] J. P. Bennett, \"Concepts of mathematical modeling of sediment yield,\"\nWater Resources Research, vol. 10, pp. 485-492, 1974.\n[18] M. B. Beck, A. J. Jakeman, and M. J. McAleer, \"Construction and\nevaluation of models of environmental systems,\" In: Beck, M.B.,\nMcAleer, M.J. (Eds.), Modelling Change in Environmental Systems.John\nWiley and Sons, pp. pp. 3–35, 1995.\n[19] J. D. Kalma and M. Sivapalan, Scale issues in hydrological modelling:\nJohn Wiley and Sons, 1995.\n[20] D. K. Borah, \"Hydrologic procedures of storm event watershed models:\na comprehensive review and comparison,\" Hydrological Processes, vol.\n25, pp. 3472-3489, 2011.\n[21] N. R. Pradhan, C. W. Downer, and B. E. Johnson, \"A physics based\nhydrologic modeling approach to simulate non-point source pollution for\nthe purposes of calculating TMDLs and designing abatement measures,\"\nin Practical Aspects of Computational Chemistry III, ed: Springer, 2014,\npp. 249-282.\n[22] S. Kim, D.-J. Seo, H. Riazi, and C. Shin, \"Improving water quality\nforecasting via data assimilation–Application of maximum likelihood\nensemble filter to HSPF,\" Journal of Hydrology, vol. 519, pp. 2797-\n2809, 2014.\n[23] A. K. Sajjan, Y. Gyasi-Agyei, and R. H. Sharma, \"Modeling Grass-\nCover Effects on Soil Erosion on Railway Embankment Steep Slopes,\"\nJournal of Hydrologic Engineering, 2014.\n[24] I. B. Karlsson, T. O. Sonnenborg, J. C. Refsgaard, and K. H. Jensen,\n\"Significance of hydrological model choice and land use changes when\ndoing climate change impact assessment,\" 2014.\n[25] J. jeanne Huang, X. Lin, J. Wang, and H. Wang, \"The precipitation\ndriven correlation based mapping method (PCM) for identifying the\ncritical source areas of non-point source pollution,\" Journal of\nHydrology, 2015.\n[26] R. A. Letcher, A. J. Jakeman, W. S. Merritt, L. J. McKee, B. D. Eyre,\nand B. Baginska, \"Review of techniques to estimate catchment exports,\"\n1999.\n[27] C. Perrin, C. Michel, and V. Andréassian, \"Does a large number of\nparameters enhance model performance? Comparative assessment of\ncommon catchment model structures on 429 catchments,\" Journal of\nHydrology, vol. 242, pp. 275-301, 2001.\n[28] M. Thorsen, J. Refsgaard, S. Hansen, E. Pebesma, J. Jensen, and S.\nKleeschulte, \"Assessment of uncertainty in simulation of nitrate leaching\nto aquifers at catchment scale,\" Journal of Hydrology, vol. 242, pp. 210-\n227, 2001.\n[29] C. Adami, Introduction to artificial life: Springer, 1998.\n[30] W. Banzhaf, \"Evolutionary Computation and Genetic Programming,\"\n2012.\n[31] A. Mellit and S. A. Kalogirou, \"Artificial intelligence techniques for\nphotovoltaic applications: A review,\" Progress in Energy and\nCombustion Science, vol. 34, pp. 574-632, 2008.\n[32] A. S. Tokar and P. A. Johnson, \"Rainfall-runoff modeling using artificial\nneural networks,\" Journal of Hydrologic Engineering, vol. 4, pp. 232-\n239, 1999.\n[33] J. Lin and F. L. Lewis, \"Two-time scale fuzzy logic controller of flexible\nlink robot arm,\" Fuzzy sets and systems, vol. 139, pp. 125-149, 2003.\n[34] P. Vas, Artificial-intelligence-based electrical machines and drives:\napplication of fuzzy, neural, fuzzy-neural, and genetic-algorithm-based\ntechniques vol. 45: Oxford University Press, 1999.\n[35] A. Aytek and O. Kisi, \"A genetic programming approach to suspended\nsediment modelling,\" Journal of Hydrology, vol. 351, pp. 288– 298,\n2008. [36] J. Smith and R. N. Eli, \"Neural-network models of rainfall-runoff\nprocess,\" Journal of water resources planning and management, vol.\n121, pp. 499-508, 1995.\n[37] D. Ömer Faruk, \"A hybrid neural network and ARIMA model for water\nquality time series prediction,\" Engineering Applications of Artificial\nIntelligence, vol. 23, pp. 586-594, 2010.\n[38] J. Lloret, \"Underwater sensor nodes and networks,\" Sensors, vol. 13, pp.\n11782-11796, 2013.\n[39] C. Sivapragasam, R. Maheswaran, and V. Venkatesh, \"Genetic\nprogramming approach for flood routing in natural channels,\"\nHydrological processes, vol. 22, pp. 623-628, 2008.\n[40] T. Mulvaney, \"On the use of self-registering rain and flood gauges in\nmaking observations of the relations of rainfall and flood discharges in a\ngiven catchment,\" Proceedings of the institution of Civil Engineers of\nIreland, vol. 4, pp. 18-33, 1851.\n[41] Y. M. Chiang and F. J. Chang, \"Integrating hydrometeorological\ninformation for rainfall‐runoff modelling by artificial neural networks,\"\nHydrological Processes, vol. 23, pp. 1650-1659, 2009.\n[42] F. Anctil, C. Perrin, and V. Andreassian, \"ANN output updating of\nlumped conceptual rainfall/runoff forecasting models1,\" ed: Wiley\nOnline Library, 2003.\n[43] V. P. Singh and D. A. Woolhiser, \"Mathematical modeling of watershed\nhydrology,\" Journal of hydrologic engineering, vol. 7, pp. 270-292,\n2002.\n[44] D. Solomatine and A. Ostfeld, \"Data-driven modelling: some past\nexperiences and new approaches,\" Journal of hydroinformatics, vol. 10,\npp. 3-22, 2008.\n[45] K. Beven, A. Calver, and E. Morris, \"The Institute of Hydrology\ndistributed model,\" 1987.\n[46] D. Yang, S. Herath, and K. Musiake, \"Development of a\ngeomorphology-based hydrological model for large catchments,\" Annual\nJournal of Hydraulic Engineering, JSCE, vol. 42, pp. 169-174, 1998.\n[47] S. Bergström and V. Singh, \"The HBV model,\" Computer models of\nwatershed hydrology., pp. 443-476, 1995.\n[48] V. P. Singh, Computer models of watershed hydrology: Water Resources\nPublications, 1995.\n[49] B. Yegnanarayana, Artificial neural networks: PHI Learning Pvt. Ltd.,\n2009.\n[50] J. Dorado, J. R. RabuñAL, A. Pazos, D. Rivero, A. Santos, and J.\nPuertas, \"Prediction and modeling of the rainfall-runoff transformation\nof a typical urban basin using ANN and GP,\" Applied Artificial\nIntelligence, vol. 17, pp. 329-343, 2003.\n[51] J. Shiri and Ö. Kişi, \"Comparison of genetic programming with neurofuzzy\nsystems for predicting short-term water table depth fluctuations,\"\nComputers & Geosciences, vol. 37, pp. 1692-1701, 2011.\n[52] G. Tayfur, Soft computing in water resources engineering: artificial\nneural networks, fuzzy logic and genetic algorithms: WIT\nPress/Computational Mechanics, 2011.\n[53] F. Modaresi and S. Araghinejad, \"A Comparative Assessment of\nSupport Vector Machines, Probabilistic Neural Networks, and K-Nearest\nNeighbor Algorithms for Water Quality Classification,\" Water\nResources Management, vol. 28, pp. 4095-4111, 2014.\n[54] B. Scholkopf, A. Smola, R. C. Williamson, and P. Bartlett, \"New\nsupport vector algorithms,\" Neural Computation, vol. 12, pp. 1207–\n1245, 2000.\n[55] R. S. Govindaraju and A. R. Rao, Artificial neural networks in\nhydrology: Springer Publishing Company, Incorporated, 2010.\n[56] J. D. Salas, Applied modeling of hydrologic time series: Water\nResources Publication, 1980.\n[57] B. Sivakumar and R. Berndtsson, \"Nonlinear Dynamic and Chaos in\nHydrology,\" in Advances in data-based approaches for hydrologic\nmodeling and forecasting, B. Sivakumar and R. Berndtsson, Eds., ed\nSingapore: World Scientific, 2010, pp. 411-461.\n[58] C. Wu, \"Hydrological predictions using data-driven models coupled\nwith data preprocessing techniques,\" The Hong Kong Polytechnic\nUniversity, 2010.\n[59] G. E. Box, G. M. Jenkins, and G. C. Reinsel, Time series analysis:\nforecasting and control: John Wiley & Sons, 2013.\n[60] R. Poli and J. Koza, Genetic Programming: Springer, 2014.\n[61] K. Ahmadaali, A. Liaghat, O. B. Haddad, and N. Heydari, \"Estimation\nof Virtual Water Using Support Vector Machine, K-nearest neighbour,\nand Radial Basis Function Neural Network Models,\" International\nJournal of Agronomy and Plant Production, vol. 4, pp. 2926-2936,\n2013.\n[62] A. Danandeh Mehr, E. Kahya, and E. Olyaie, \"Streamflow prediction\nusing linear genetic programming in comparison with a neuro-wavelet\ntechnique,\" Journal of Hydrology, vol. 505, pp. 240-249, 2013.\n[63] J. Sreekanth and B. Datta, \"Comparative evaluation of genetic\nprogramming and neural network as potential surrogate models for\ncoastal aquifer management,\" Water resources management, vol. 25, pp.\n3201-3218, 2011.\n[64] J. R. Koza, Genetic programming: on the programming of computers by\nmeans of natural selection vol. 1: MIT press, 1992.\n[65] R. Poli, W. W. B. Langdon, N. F. McPhee, and J. R. Koza, A field guide\nto genetic programming: Lulu. com, 2008.\n[66] E. K. Burke and G. Kendall, Search methodologies: introductory\ntutorials in optimization and decision support techniques: Springer,\n2005.\n[67] W. Banzhaf, P, R. E. Keller, and F. D. Francone, Genetic programming:\nan introduction. San Francisco (CA): Morgan Kaufmann, 1998.\n[68] O. Giustolisi, \"Using genetic programming to determine Chezy\nresistance coefficient in corrugated channels,\" Journal of\nHydroinformatics, vol. 6, pp. 157-173, 2004.\n[69] A. P. Mitra, A. A. Almal, B. George, D. W. Fry, P. F. Lenehan, V.\nPagliarulo, et al., \"The use of genetic programming in the analysis of\nquantitative gene expression profiles for identification of nodal status in\nbladder cancer,\" BMC cancer, vol. 6, p. 159, 2006.\n[70] A. Makkeasorn, N.-B. Chang, and J. Li, \"Seasonal change detection of\nriparian zones with remote sensing images and genetic programming in\na semi-arid watershed,\" Journal of Environmental Management, vol. 90,\npp. 1069-1080, 2009.\n[71] R. Nunkesser, T. Bernholt, H. Schwender, K. Ickstadt, and I. Wegener,\n\"Detecting high-order interactions of single nucleotide polymorphisms\nusing genetic programming,\" Bioinformatics, vol. 23, pp. 3280-3288,\n2007.\n[72] L. Zhang, L. B Jack, and A. K. Nandi, \"Fault detection using genetic\nprogramming,\" Mechanical Systems and Signal Processing, vol. 19, pp.\n271-289, 2005.\n[73] D. A. Savic, G. A. Walters, and J. W. Davidson, \"A genetic\nprogramming approach to rainfall-runoff modelling,\" Water Resources\nManagement, vol. 13, pp. 219-231, 1999.\n[74] J. A. Zyserman and J. Fredsøe, \"Data analysis of bed concentration of\nsuspended sediment,\" Journal of Hydraulic Engineering, vol. 120, pp.\n1021-1042, 1994.\n[75] V. Babovic, M. Keijzer, D. Aguilera, and J. Harrington, \"Automatic\ndiscovery of settling velocity equations,\" D2K Technical Rep, p. 1, 2001.\n[76] S. Y. Liong, T. R. Gautam, S. T. Khu, V. Babovic, M. Keijzer, and N.\nMuttil, \"GENETIC PROGRAMMING: A NEW PARADIGM IN\nRAINFALL RUNOFF MODELING1,\" JAWRA Journal of the American\nWater Resources Association, vol. 38, pp. 705-718, 2002.\n[77] E. Harris, V. Babovic, and R. Falconer, \"Velocity predictions in\ncompound channels with vegetated floodplains using genetic\nprogramming,\" International Journal of River Basin Management, vol.\n1, pp. 117-123, 2003.\n[78] A. Johari, G. Habibagahi, and A. Ghahramani, \"Prediction of soil–water\ncharacteristic curve using genetic programming,\" Journal of\nGeotechnical and Geoenvironmental Engineering, vol. 132, pp. 661-\n665, 2006.\n[79] J. Rabunal, J. Puertas, J. Suarez, and D. Rivero, \"Determination of the\nunit hydrograph of a typical urban basin using genetic programming and\nartificial neural networks,\" Hydrological processes, vol. 21, pp. 476-\n485, 2007.\n[80] O. Kisi and J. Shiri, \"A comparison of genetic programming and ANFIS\nin forecasting daily, monthly and daily streamflows,\" in Proceedings of\nthe international symposium on innovations in intelligent systems and\napplications, 2010, pp. 118–122.\n[81] J. Shiri, Ö. Kişi, G. Landeras, J. J. López, A. H. Nazemi, and L. C.\nStuyt, \"Daily reference evapotranspiration modeling by using genetic\nprogramming approach in the Basque Country (Northern Spain),\"\nJournal of Hydrology, vol. 414, pp. 302-316, 2012.\n[82] A. S. Kizhisseri, D. Simmonds, Y. Rafiq, and M. Borthwick, \"An\nevolutionary computation approach to sediment transport modeling,\" in\nFifth International Conference on Coastal Dynamics, 2005, pp. 4-8.\n[83] K. Ozgur and S. Jalal, \"River suspended sediment estimation by climatic\nvariables implication:Comparative study among soft computing\ntechniques,\" Computers & Geosciences, vol. 43, pp. 73-82, 2012.\n[84] A. Guven and Ö. Kişi, \"Estimation of suspended sediment yield in\nnatural rivers using machine-coded linear genetic programming,\" Water\nresources management, vol. 25, pp. 691-704, 2011. [85] V. Garg and V. Jothiprakash, \"Evaluation of reservoir sedimentation\nusing data driven techniques,\" Applied Soft Computing, vol. 13, pp.\n3567–3581, 2013.\n[86] O. Kisi, A. H. Dailr, M. Cimen, and J. Shiri, \"Suspended sediment\nmodeling using genetic programming and soft computing techniques,\"\nJournal of Hydrology, vol. 450-451, pp. 48-58, 2012.\n[87] O. Kisi and A. Guven, \"A machine code-based genetic programming for\nsuspended sediment concentration estimation,\" Advances in Engineering\nSoftware, vol. 41, pp. 939-945, 7// 2010.\n[88] J. McDermott, D. R. White, S. Luke, L. Manzoni, M. Castelli, L.\nVanneschi, et al., \"Genetic programming needs better benchmarks,\" in\nProceedings of the fourteenth international conference on Genetic and\nevolutionary computation conference, 2012, pp. 791-798.\n[89] M. O'Neill, L. Vanneschi, S. Gustafson, and W. Banzhaf, \"Open issues\nin genetic programming,\" Genetic Programming and Evolvable\nMachines, vol. 11, pp. 339-363, 2010.\n[90] T. R. Naik and V. K. Dabhi, \"Improving Generalization Ability of\nGenetic Programming: Comparative Study,\" arXiv preprint\narXiv:1304.3779, 2013.\n[91] R. Poli, \"Exact Schema Theory for Genetic Programming and Variablelength\nGenetic Algorithms with One-Point Crossover \" Genet. Program.\nEvol. Mach. , vol. 2, p. 163, 2001.\n[92] R. Poli, L. Vanneschi, W. B. Langdon, and N. F. McPhee, \"Theoretical\nresults in genetic programming: the next ten year?,\" Genet Program\nEvolvable, pp. 285–320, 2010.\n[93] C. Ryan, J. Collins, and M. O. Neill, \"Grammatical evolution: Evolving\nprograms for an arbitrary language,\" in Genetic Programming, ed:\nSpringer, 1998, pp. 83-96.\n[94] A. J. Owens, M. J. Walsh, and L. J. Fogel, Artificial intelligence through\nsimulated evolution, 1966.\n[95] J. F. Miller, \"An empirical study of the efficiency of learning boolean\nfunctions using a cartesian genetic programming approach,\" in\nProceedings of the Genetic and Evolutionary Computation Conference,\n1999, pp. 1135-1142.\n[96] V. Nourani, R. G. Ejlali, and M. T. Alami, \"Spatiotemporal groundwater\nlevel forecasting in coastal aquifers by hybrid artificial neural networkgeostatistics\nmodel: a case study,\" Environmental Engineering Science,\nvol. 28, pp. 217-228, 2011.\n[97] T. Rajaee, V. Nourani, M. Zounemat-Kermani, and O. Kisi, \"River\nsuspended sediment load prediction: Application of ANN and wavelet\nconjunction model,\" Journal of Hydrologic Engineering, vol. 16, pp.\n613-627, 2010.\n[98] O. Kisi and J. Shiri, \"Precipitation forecasting using wavelet-genetic\nprogramming and wavelet-neuro-fuzzy conjunction models,\" Water\nresources management, vol. 25, pp. 3135-3152, 2011."]}
Databáze: OpenAIRE