From extraocular photoreception to pigment movement regulation: a new control mechanism of the lanternshark luminescence
Autor: | René Rezsohazy, Jérôme Mallefet, Tomohiro Sugihara, Jérôme Delroisse, Mitsumasa Koyanagi, Akihisa Terakita, Laurent Duchatelet |
---|---|
Přispěvatelé: | UCL - SST/LIBST - Louvain Institute of Biomolecular Science and Technology |
Rok vydání: | 2020 |
Předmět: |
0106 biological sciences
0301 basic medicine endocrine system Opsin Luminescence Light Physiology Movement lcsh:Medicine Adrenocorticotropic hormone Hormone receptors Motor proteins 010603 evolutionary biology 01 natural sciences Article Calcium in biology 03 medical and health sciences Adrenocorticotropic Hormone Phosphoinositol signalling Animal physiology Animals Bioluminescence Photoreceptor Cells Encephalopsin lcsh:Science Melatonin Skin Multidisciplinary Opsins Pigmentation Chemistry lcsh:R Photophore Chromatophore Prolactin Cell biology 030104 developmental biology alpha-MSH モータータンパク質 Sharks lcsh:Q Light emission Ichthyology hormones hormone substitutes and hormone antagonists Signal Transduction |
Zdroj: | Scientific Reports Scientific Reports, Vol. 10, no.1, p. 10195 (2020) Scientific Reports, Vol 10, Iss 1, Pp 1-15 (2020) |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-020-67287-w |
Popis: | The velvet belly lanternshark, Etmopterus spinax, uses counterillumination to disappear in the surrounding blue light of its marine environment. This shark displays hormonally controlled bioluminescence in which melatonin (MT) and prolactin (PRL) trigger light emission, while α-melanocyte-stimulating hormone (α-MSH) and adrenocorticotropic hormone (ACTH) play an inhibitory role. The extraocular encephalopsin (Es-Opn3) was also hypothesized to act as a luminescence regulator. The majority of these compounds (MT, α-MSH, ACTH, opsin) are members of the rapid physiological colour change that regulates the pigment motion within chromatophores in metazoans. Interestingly, the lanternshark photophore comprises a specific iris-like structure (ILS), partially composed of melanophore-like cells, serving as a photophore shutter. Here, we investigated the role of (i) Es-Opn3 and (ii) actors involved in both MT and α-MSH/ACTH pathways on the shark bioluminescence and ILS cell pigment motions. Our results reveal the implication of Es-Opn3, MT, inositol triphosphate (IP3), intracellular calcium, calcium-dependent calmodulin and dynein in the ILS cell pigment aggregation. Conversely, our results highlighted the implication of the α-MSH/ACTH pathway, involving kinesin, in the dispersion of the ILS cell pigment. The lanternshark luminescence then appears to be controlled by the balanced bidirectional motion of ILS cell pigments within the photophore. This suggests a functional link between photoreception and photoemission in the photogenic tissue of lanternsharks and gives precious insights into the bioluminescence control of these organisms. |
Databáze: | OpenAIRE |
Externí odkaz: |