HOMOGENEOUS SPHERICAL DATA OF ORBITS IN SPHERICAL EMBEDDINGS
Autor: | Giuliano Gagliardi, Johannes Hofscheier |
---|---|
Rok vydání: | 2015 |
Předmět: |
Pure mathematics
Algebra and Number Theory 14M27 14M17 Geodetic datum Mathematics - Algebraic Geometry Homogeneous Algebraic group Homogeneous space FOS: Mathematics Embedding Geometry and Topology Isomorphism Algebra over a field Mathematics::Representation Theory Algebraic Geometry (math.AG) Mathematics |
Zdroj: | Transformation Groups. 20:83-98 |
ISSN: | 1531-586X 1083-4362 |
DOI: | 10.1007/s00031-014-9297-2 |
Popis: | Let $G$ be a connected reductive complex algebraic group. Luna assigned to any spherical homogeneous space $G/H$ a combinatorial object called a homogeneous spherical datum. By a theorem of Losev, this object uniquely determines $G/H$ up to $G$-equivariant isomorphism. In this paper, we determine the homogeneous spherical datum of a $G$-orbit $X_0$ in a spherical embedding $G/H \hookrightarrow X$. As an application, we obtain a description of the colored fan associated to the spherical embedding $X_0 \hookrightarrow \bar{X_0}$. 14 pages, 1 table |
Databáze: | OpenAIRE |
Externí odkaz: |