HOMOGENEOUS SPHERICAL DATA OF ORBITS IN SPHERICAL EMBEDDINGS

Autor: Giuliano Gagliardi, Johannes Hofscheier
Rok vydání: 2015
Předmět:
Zdroj: Transformation Groups. 20:83-98
ISSN: 1531-586X
1083-4362
DOI: 10.1007/s00031-014-9297-2
Popis: Let $G$ be a connected reductive complex algebraic group. Luna assigned to any spherical homogeneous space $G/H$ a combinatorial object called a homogeneous spherical datum. By a theorem of Losev, this object uniquely determines $G/H$ up to $G$-equivariant isomorphism. In this paper, we determine the homogeneous spherical datum of a $G$-orbit $X_0$ in a spherical embedding $G/H \hookrightarrow X$. As an application, we obtain a description of the colored fan associated to the spherical embedding $X_0 \hookrightarrow \bar{X_0}$.
14 pages, 1 table
Databáze: OpenAIRE