Faces of faces of the tridiagonal Birkhoff polytope

Autor: Enide Andrade Martins, Liliana N. Costa
Rok vydání: 2010
Předmět:
Zdroj: Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
ISSN: 0024-3795
DOI: 10.1016/j.laa.2009.10.030
Popis: The tridiagonal Birkhoff polytope, Ω n t , is the set of real square matrices with nonnegative entries and all rows and columns sums equal to 1 that are tridiagonal. This polytope arises in many problems of enumerative combinatorics, statistics, combinatorial optimization, etc. In this paper, for a given a p -face of Ω n t , we determine the number of faces of lower dimension that are contained in it and we discuss its nature. In fact, a 2-face of Ω n t is a triangle or a quadrilateral and the cells can only be tetrahedrons, pentahedrons or hexahedrons.
Databáze: OpenAIRE