Gamma positivity of the Descent based Eulerian polynomial in positive elements of Classical Weyl Groups

Autor: Hiranya Kishore Dey, Sivaramakrishnan Sivasubramanian
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Popis: The classical Eulerian polynomials $A_n(t)$ are known to be gamma positive. Define the positive Eulerian polynomial $A_n^+(t)$ as the polynomial obtained when we sum descents over the alternating group. We show that $A_n^+(t)$ is gamma positive iff $n \equiv 0,1$ (mod 4). When $n \equiv 2$ (mod 4) we show that $A_n^+(t)$ can be written as a sum of two gamma positive polynomials while if $n \equiv 3$ (mod 4), we show that $A_n^+(t)$ can be written as a sum of three gamma positive polynomials. Similar results are shown when we consider the positive type-D and type-D Eulerian polynomials.
24 pages
Databáze: OpenAIRE