Real-time hyperpolarized 13C magnetic resonance detects increased pyruvate oxidation in pyruvate dehydrogenase kinase 2/4–double knockout mouse livers
Autor: | Gaurav Sharma, Craig R. Malloy, A. Dean Sherry, David T. Chuang, R. Max Wynn, Chalermchai Khemtong, Cheng Yang Wu, Wen Jun Gui |
---|---|
Rok vydání: | 2019 |
Předmět: |
Pyruvate decarboxylation
Pyruvate dehydrogenase kinase Physiology Carbohydrates lcsh:Medicine Pyruvate cycling PDK4 Pyruvate Dehydrogenase Complex Biochemistry Article Mice 03 medical and health sciences 0302 clinical medicine Pyruvic Acid Animals Carbon-13 Magnetic Resonance Spectroscopy lcsh:Science 030304 developmental biology Mice Knockout 0303 health sciences Multidisciplinary Chemistry lcsh:R Pyruvate Dehydrogenase Acetyl-Transferring Kinase Pyruvate dehydrogenase complex Pyruvate carboxylase Citric acid cycle Liver 030220 oncology & carcinogenesis Carbohydrate Metabolism lcsh:Q Oxidation-Reduction Flux (metabolism) Metabolic Networks and Pathways |
Zdroj: | Scientific Reports, Vol 9, Iss 1, Pp 1-11 (2019) Scientific Reports |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-019-52952-6 |
Popis: | The pyruvate dehydrogenase complex (PDH) critically regulates carbohydrate metabolism. Phosphorylation of PDH by one of the pyruvate dehydrogenase kinases 1–4 (PDK1–4) decreases the flux of carbohydrates into the TCA cycle. Inhibition of PDKs increases oxidative metabolism of carbohydrates, so targeting PDKs has emerged as an important therapeutic approach to manage various metabolic diseases. Therefore, it is highly desirable to begin to establish imaging tools for noninvasive measurements of PDH flux in rodent models. In this study, we used hyperpolarized (HP) 13C-magnetic resonance spectroscopy to study the impact of a PDK2/PDK4 double knockout (DKO) on pyruvate metabolism in perfused livers from lean and diet-induced obese (DIO) mice and validated the HP observations with high-resolution 13C-nuclear magnetic resonance (NMR) spectroscopy of tissue extracts and steady-state isotopomer analyses. We observed that PDK-deficient livers produce more HP-bicarbonate from HP-[1-13C]pyruvate than age-matched control livers. A steady-state 13C-NMR isotopomer analysis of tissue extracts confirmed that flux rates through PDH, as well as pyruvate carboxylase and pyruvate cycling activities, are significantly higher in PDK-deficient livers. Immunoblotting experiments confirmed that HP-bicarbonate production from HP-[1-13C]pyruvate parallels decreased phosphorylation of the PDH E1α subunit (pE1α) in liver tissue. Our findings indicate that combining real-time hyperpolarized 13C NMR spectroscopy and 13C isotopomer analysis provides quantitative insights into intermediary metabolism in PDK-knockout mice. We propose that this method will be useful in assessing metabolic disease states and developing therapies to improve PDH flux. |
Databáze: | OpenAIRE |
Externí odkaz: |