Electrostatic Vibration Energy Harvesters with Linear and Nonlinear Resonators
Autor: | Peter Harte, Elena Blokhina, Orla Feely, Danièle Fournier-Prunaret, Dimitri Galayko |
---|---|
Přispěvatelé: | University College Dublin [Dublin] (UCD), Équipe Méthodes et Algorithmes en Commande (LAAS-MAC), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Circuits Intégrés Numériques et Analogiques (CIAN), Laboratoire d'Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT) |
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
chaos
Perturbation (astronomy) 02 engineering and technology 01 natural sciences Upper and lower bounds Sliding mode control 010305 fluids & plasmas Resonator Filippov systems Control theory 0103 physical sciences Electrostatic energy harvesting Engineering (miscellaneous) Bifurcation period-doubling bifurcations Read More: http://www.worldscientific.com/doi/abs/10.1142/S0218127414300304 Mathematics Applied Mathematics [SPI.NRJ]Engineering Sciences [physics]/Electric power 021001 nanoscience & nanotechnology Nonlinear resonator [SPI.TRON]Engineering Sciences [physics]/Electronics Vibration Nonlinear system [SPI.ELEC]Engineering Sciences [physics]/Electromagnetism Classical mechanics Modeling and Simulation sliding bifurcations 0210 nano-technology nonlinear oscillators |
Zdroj: | International journal of bifurcation and chaos in applied sciences and engineering International journal of bifurcation and chaos in applied sciences and engineering, World Scientific Publishing, 2014, 24 (11), pp.1430030. ⟨10.1142/S0218127414300304⟩ International journal of bifurcation and chaos in applied sciences and engineering, 2014, 24 (11), pp.1430030. ⟨10.1142/S0218127414300304⟩ |
ISSN: | 0218-1274 1793-6551 |
DOI: | 10.1142/S0218127414300304⟩ |
Popis: | International audience; This paper discusses the time-dependent dynamics of electrostatic vibration energy harvesters (eVEHs) with linear and nonlinear mechanical resonators. These eVEHs are fundamentally nonlinear regardless of whether a linear or nonlinear resonator is being used. The model of the system under investigation has the form of a piecewise-smooth dynamical system of a Filippov type that has a specific discontinuity in the form of a hold-on term. We use a perturbation technique called the multiple scales method to develop a theory to analyze the steady-state dynamics of the system, be it with a linear or a nonlinear resonator. We then analyze the stability of the steady-state orbit to determine when the first doubling bifurcation occurs in the system. This gives an upper bound on the region of steady-state oscillations which allows us to determine a theoretical limit on the power convertible by the eVEH. We then turn our discussion to the nonlinear behavior we see in the system's transition to chaos. Since the eVEH studied here is a Filippov type system, sliding modes and sliding bifurcations are possible in the system. We discuss the evolution of the sliding region and give particular examples of sliding phenomena and sliding bifurcations. An understanding of sliding phenomena is required for analyzing the transition to chaos since segments of sliding motion appear on trajectories that undergo period-doubling bifurcations. The transition to chaos is explained in detail by the example of the system with a linear resonator, however we discuss examples of the system with mechanical nonlinearities and discuss the difference between the linear and nonlinear cases. |
Databáze: | OpenAIRE |
Externí odkaz: |