Group 11 Metal Compounds with Tripodal Bis(imidazole) Thioether Ligands. Applications as Catalysts in the Oxidation of Alkenes and as Antimicrobial Agents

Autor: María Contel, Eunmi Hwang, Armando Varela-Ramirez, Renato J. Aguilera, Reema Anis, Rafael Ovalle, Fangwei Liu
Rok vydání: 2011
Předmět:
Models
Molecular

tripodal bis(imidazol) thioether pincer ligands
Pharmaceutical Science
Crystal structure
Ligands
01 natural sciences
Medicinal chemistry
Analytical Chemistry
chemistry.chemical_compound
Anti-Infective Agents
Coordination Complexes
Drug Discovery
Imidazole
Cell Death
Imidazoles
Chemistry (miscellaneous)
visual_art
visual_art.visual_art_medium
Molecular Medicine
group 11 metals
Oxidation-Reduction
non-toxic
Stereochemistry
Microbial Sensitivity Tests
Alkenes
Sulfides
010402 general chemistry
Catalysis
Article
Metal
lcsh:QD241-441
Inhibitory Concentration 50
Thioether
lcsh:Organic chemistry
oxidation alkenes
Animals
Humans
Physical and Theoretical Chemistry
Pincer ligand
ripodal bis(imidazol) thioether pincer ligands
antimicrobial
Bacteria
010405 organic chemistry
Ligand
Organic Chemistry
Center (category theory)
Fungi
0104 chemical sciences
Mice
Inbred C57BL

chemistry
HeLa Cells
Zdroj: Molecules (Basel, Switzerland)
Molecules, Vol 16, Iss 8, Pp 6701-6720 (2011)
Molecules; Volume 16; Issue 8; Pages: 6701-6720
ISSN: 1420-3049
Popis: New group 11 metal complexes have been prepared using the previously described tripodal bis(imidazole) thioether ligand (N-methyl-4,5-diphenyl-2-imidazolyl)2C(OMe)C(CH3)2S(tert-Bu) ({BITOMe,StBu}, 2). The pincer ligand offers a N2S donor atom set that can be used to coordinate the group 11 metals in different oxidation states [AuI, AuIII, AgI, CuI and CuII]. Thus the new compounds [Au{BITOMe,StBu}Cl][AuCl4]2 (3), [Au{BITOMe,StBu}Cl] (4), [Ag{BITOMe,StBu}X] (X = OSO2CF3 − 5, PF6 − 6) and [Cu{BITOMe,StBu}Cl2] (7) have been synthesized from reaction of 2 with the appropriate metal precursors, and characterized in solution. While attempting characterization in the solid state of 3, single crystals of the neutral dinuclear mixed AuIII-AuI species [Au2{BITOMe,S}Cl3] (8) were obtained and its crystal structure was determined by X-ray diffraction studies. The structure shows a AuIII center coordinated to the pincer ligand through one N and the S atom. The soft AuI center coordinates to the ligand through the same S atom that has lost the tert-butyl group, thus becoming a thiolate ligand. The short distance between the AuI–AuIII atoms (3.383 Å) may indicate a weak metal-metal interaction. Complexes 2–7 and the previously described CuI compound [Cu{BITOMe,StBu}]PF6 (9) have been evaluated in the oxidation of biphenyl ethylene with tert-butyl hydrogen peroxide (TBHP) as the oxidant. Results have shown that the AuI and AgI complexes 4 and 6 (at 10 mol % loading) are the more active catalysts in this oxidative cleavage. The antimicrobial activity of compounds 2–5, 7 and 9 against Gram-positive and Gram-negative bacteria and yeast has also been evaluated. The new gold and silver compounds display moderate to high antibacterial activity, while the copper derivatives are mostly inactive. The gold and silver complexes were also potent against fungi. Their cytotoxic properties have been analyzed in vitro utilizing HeLa human cervical carcinoma cells. The compounds displayed a very low cytotoxicity on this cell line (5 to 10 times lower than cisplatin) and on normal primary cells derived from C57B6 mouse muscle explants, which may make them promising candidates as potential antimicrobial agents and safer catalysts due to low toxicity in human and other mammalian tissues.
Databáze: OpenAIRE