Numerical solutions of radiative heat transfer in combustion systems using a parallel modified discrete ordinates method and several recent formulations of WSGG model
Autor: | Sylvain Contassot-Vivier, Fatmir Asllanaj, Francis Henrique Ramos França, Olivier Botella |
---|---|
Přispěvatelé: | Laboratoire Énergies et Mécanique Théorique et Appliquée (LEMTA ), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), SIMulating and Building IOT (SIMBIOT), Department of Networks, Systems and Services (LORIA - NSS), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Universidade Federal do Rio Grande do Sul [Porto Alegre] (UFRGS), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Physics
Radiation Speedup 020209 energy Numerical analysis Computation Parallel algorithm 02 engineering and technology 7. Clean energy Atomic and Molecular Physics and Optics Exponential function [SPI]Engineering Sciences [physics] Heat transfer 0202 electrical engineering electronic engineering information engineering Radiative transfer Applied mathematics Wavenumber 020201 artificial intelligence & image processing Spectroscopy ComputingMilieux_MISCELLANEOUS |
Zdroj: | Journal of Quantitative Spectroscopy and Radiative Transfer Journal of Quantitative Spectroscopy and Radiative Transfer, Elsevier, 2021, 274, pp.107863. ⟨10.1016/j.jqsrt.2021.107863⟩ Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 274, pp.107863. ⟨10.1016/j.jqsrt.2021.107863⟩ |
ISSN: | 0022-4073 |
DOI: | 10.1016/j.jqsrt.2021.107863⟩ |
Popis: | The aim of the paper is to perform 3D radiative transfer calculations in combustion gas mixtures. For this purpose, a parallel modified Discrete Ordinates Method with a cell-vertex formulation on unstructured tetrahedral grid is proposed for solving the Radiative Transfer Equation (RTE) in realistic geometries. Several recent formulations of the weighted-sum-of-gray-gases (WSGG) model are implemented. To reduce the false scattering, the cell-vertex formulation is combined with an Exponential scheme and is compared to the Step scheme. The results are then compared with published results on non-isothermal and non-homogeneous gas mixtures. The use of non-gray WSGG models shows a very good level of accuracy for the evaluation of wall heat transfer and radiative heat source. The Exponential scheme is more accurate than the Step scheme. The summation over the wavenumber spectrum of the radiative model is usually carried out after having computed the radiative quantities for each discrete angular direction. By summing first over the wavenumber spectrum, a reduction in the computation time is significantly obtained, up to a factor of 16 on a case study. Also, additionnal significant speedup is obtained with an efficient distributed and multi-threaded parallel algorithm. When the Step scheme is used, the computation time increases very slightly with the number of gray gases. The procedure to speed up the calculations can be applied to any arbitrary numerical method for solving the spectral RTE. |
Databáze: | OpenAIRE |
Externí odkaz: |