Bounds for the Euclidean minima of function fields
Autor: | Piotr Maciak, Leonardo Zapponi, Marina Monsurrò |
---|---|
Rok vydání: | 2014 |
Předmět: |
Pure mathematics
Algebra and Number Theory Mathematics - Number Theory Algebraic curves Algebraic number field Euclidean distance matrix Computer Science::Digital Libraries Euclidean minima Maxima and minima Euclidean distance Combinatorics Euclidean geometry FOS: Mathematics Euclidean domain Number Theory (math.NT) Algebraic curve Invariant (mathematics) Function fields Mathematics |
Zdroj: | Journal of Algebra. 399:693-702 |
ISSN: | 0021-8693 |
DOI: | 10.1016/j.jalgebra.2013.09.027 |
Popis: | In this paper, we define Euclidean minima for function fields and give some bound for this invariant. We furthermore show that the results are analogous to those obtained in the number field case. (C) 2013 The Authors. Published by Elsevier Inc. All rights reserved. |
Databáze: | OpenAIRE |
Externí odkaz: |