Structure of the RZZ complex and molecular basis of its interaction with Spindly

Autor: Sabine Wohlgemuth, Stefano Maffini, Herbert Waldmann, Michael Saur, Shyamal Mosalaganti, Jenny Keller, Pascaline Rombaut, Tanja Bange, Franz Herzog, Anika Altenfeld, Franziska Müller, Michael Winzker, Annemarie Wehenkel, Andrea Musacchio, Stefan Raunser, Arsen Petrovic
Přispěvatelé: Max Planck Institute of Molecular Physiology, Max-Planck-Gesellschaft, Ludwig-Maximilians-Universität München (LMU), Technische Universität Dortmund [Dortmund] (TU), Universität Duisburg-Essen [Essen], J. Keller acknowledges support by the European Molecular Biology Organization long-term fellowship ALTF 331-2010. A. Wehenkel acknowledges support by the European Molecular Biology Organization long-term fellowship ALTF 662-2008 and Marie Curie Intra-European Fellowship. A. Musacchio acknowledges funding by the European Research Council Advanced Grant RECEPIANCE (grant 669686) and the Deutsche Forschungsgemeinschaft Collaborative Research Centre (CRC) 1093. F. Herzog is supported by the European Research Council StG MolStruKT (grant 638218) and by the Deutsche Forschungsgemeinschaft (grant GRK1721). S. Raunser gratefully acknowledges the Max Planck Society and the European Council under the European Union’s Seventh Framework Programme (FP7/2007–2013, grant 615984)., We thank Marta Mattiuzzo and Anna De Antoni for sharing unpublished reagents, and we thank members of our laboratories for helpful discussions., European Project: 669686,H2020,ERC-2014-ADG,RECEPIANCE(2015), European Project: 638218,H2020,ERC-2014-STG,MolStruKT(2015), European Project: 615984,EC:FP7:ERC,ERC-2013-CoG,BACTERIAL SYRINGES(2014), Universität Duisburg-Essen = University of Duisburg-Essen [Essen]
Jazyk: angličtina
Rok vydání: 2017
Předmět:
0301 basic medicine
Cell Cycle Proteins
MESH: Spindle Apparatus / metabolism
Microtubules
MESH: Protein Transport / physiology
MESH: Dyneins / metabolism
MESH: Microtubules / metabolism
Kinetochores
Research Articles
RZZ complex
[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Structural Biology [q-bio.BM]

biology
Kinetochore
MESH: Kinetochores / metabolism
MESH: Cell Cycle Proteins / metabolism
Cell biology
Protein Transport
Spindle checkpoint
[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Biomolecules [q-bio.BM]

MESH: M Phase Cell Cycle Checkpoints / physiology
Microtubule-Associated Proteins
MESH: Kinetochores / physiology
Biologie
endocrine system
MESH: Cell Line
Tumor

Dynein
Mitosis
Spindle Apparatus
MESH: Carrier Proteins / metabolism
Clathrin
Article
03 medical and health sciences
MESH: Spindle Apparatus / physiology
Dynein ATPase
Cell Line
Tumor

Humans
MESH: Microtubule-Associated Proteins / metabolism
MESH: Humans
MESH: Mitosis / physiology
Dyneins
Cell Biology
Spindle apparatus
030104 developmental biology
MESH: HeLa Cells
biology.protein
M Phase Cell Cycle Checkpoints
Carrier Proteins
HeLa Cells
Zdroj: Journal of Cell Biology
Journal of Cell Biology, Rockefeller University Press, 2017, 216 (4), pp.961-981. ⟨10.1083/jcb.201611060⟩
Journal of Cell Biology, 2017, 216 (4), pp.961-981. ⟨10.1083/jcb.201611060⟩
The Journal of Cell Biology
ISSN: 0021-9525
1540-8140
DOI: 10.1083/jcb.201611060⟩
Popis: The Rod–Zw10–Zwilch (RZZ) complex assembles as a fibrous corona on kinetochores before microtubule attachment during mitotic spindle formation. Mosalaganti et al. provide new structural insight into the Spindly–RZZ complex that suggests that it resembles a dynein adaptor–cargo pair in the kinetochore corona.
Kinetochores are macromolecular assemblies that connect chromosomes to spindle microtubules (MTs) during mitosis. The metazoan-specific ≈800-kD ROD–Zwilch–ZW10 (RZZ) complex builds a fibrous corona that assembles on mitotic kinetochores before MT attachment to promote chromosome alignment and robust spindle assembly checkpoint signaling. In this study, we combine biochemical reconstitutions, single-particle electron cryomicroscopy, cross-linking mass spectrometry, and structural modeling to build a complete model of human RZZ. We find that RZZ is structurally related to self-assembling cytosolic coat scaffolds that mediate membrane cargo trafficking, including Clathrin, Sec13–Sec31, and αβ’ε-COP. We show that Spindly, a dynein adaptor, is related to BicD2 and binds RZZ directly in a farnesylation-dependent but membrane-independent manner. Through a targeted chemical biology approach, we identify ROD as the Spindly farnesyl receptor. Our results suggest that RZZ is dynein’s cargo at human kinetochores.
Databáze: OpenAIRE