An algorithm to find maximum area polygons circumscribed about a convex polygon

Autor: Susanna Dann, Zsolt Lángi, Géza Tóth, Markus Ausserhofer
Rok vydání: 2017
Předmět:
DOI: 10.48550/arxiv.1706.08152
Popis: A convex polygon Q is circumscribed about a convex polygon P if every vertex of P lies on at least one side of Q. We present an algorithm for finding a maximum area convex polygon circumscribed about any given convex n-gon in O(n^3) time. As an application, we disprove a conjecture of Farris. Moreover, for the special case of regular n-gons we find an explicit solution.
Comment: 11 pages, 7 figures
Databáze: OpenAIRE