Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning

Autor: Loic Landrieu, Mohamed Boussaha
Přispěvatelé: Méthodes d'Analyses pour le Traitement d'Images et la Stéréorestitution (MATIS), Laboratoire des Sciences et Technologies de l'Information Géographique (LaSTIG), École nationale des sciences géographiques (ENSG), Institut National de l'Information Géographique et Forestière [IGN] (IGN)-Institut National de l'Information Géographique et Forestière [IGN] (IGN)-École nationale des sciences géographiques (ENSG), Institut National de l'Information Géographique et Forestière [IGN] (IGN)-Institut National de l'Information Géographique et Forestière [IGN] (IGN), Landrieu, Loic
Jazyk: angličtina
Rok vydání: 2019
Předmět:
FOS: Computer and information sciences
Computer Science - Machine Learning
Theoretical computer science
Computer science
Computer Vision and Pattern Recognition (cs.CV)
Computer Science - Computer Vision and Pattern Recognition
[INFO.INFO-NE] Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]
0211 other engineering and technologies
Point cloud
02 engineering and technology
[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]
Machine Learning (cs.LG)
[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
[STAT.ML]Statistics [stat]/Machine Learning [stat.ML]
0202 electrical engineering
electronic engineering
information engineering

Segmentation
021101 geological & geomatics engineering
Artificial neural network
business.industry
Deep learning
Graph partition
[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
[STAT.ML] Statistics [stat]/Machine Learning [stat.ML]
Graph (abstract data type)
020201 artificial intelligence & image processing
Artificial intelligence
business
Feature learning
Zdroj: CVPR
CVPR, 2019, Long Beach, France
HAL
Popis: We propose a new supervized learning framework for oversegmenting 3D point clouds into superpoints. We cast this problem as learning deep embeddings of the local geometry and radiometry of 3D points, such that the border of objects presents high contrasts. The embeddings are computed using a lightweight neural network operating on the points' local neighborhood. Finally, we formulate point cloud oversegmentation as a graph partition problem with respect to the learned embeddings. This new approach allows us to set a new state-of-the-art in point cloud oversegmentation by a significant margin, on a dense indoor dataset (S3DIS) and a sparse outdoor one (vKITTI). Our best solution requires over five times fewer superpoints to reach similar performance than previously published methods on S3DIS. Furthermore, we show that our framework can be used to improve superpoint-based semantic segmentation algorithms, setting a new state-of-the-art for this task as well.
CVPR2019
Databáze: OpenAIRE