Resting skeletal muscle PNPLA2 (ATGL) and CPT1B are associated with peak fat oxidation rates in men and women but do not explain observed sex differences

Autor: Eleanor Smith, James A. Betts, Mark P. Thomas, Javier T. Gonzalez, Jean-Philippe Walhin, Robert M. Edinburgh, Sean Williams, Oliver J. Chrzanowski-Smith, Francoise Koumanov
Rok vydání: 2021
Předmět:
Zdroj: Experimental Physiology. 106:1208-1223
ISSN: 1469-445X
0958-0670
Popis: NEW FINDINGS What is the central question of this study? What is the relationship between proteins in skeletal muscle and adipose tissue determined at rest and at peak rates of fat oxidation in men and women? What is the main finding and its importance? The resting contents of proteins in skeletal muscle involved in triglyceride hydrolysis and mitochondrial lipid transport were more strongly associated with peak fat oxidation rates than proteins related to lipid transport or hydrolysis in adipose tissue. Although females displayed higher relative rates of fat oxidation than males, this was not explained by the proteins measured in this study, suggesting that other factors determine sex differences in fat metabolism. ABSTRACT We explored key proteins involved in fat metabolism that might be associated with peak fat oxidation (PFO) and account for sexual dimorphism in fuel metabolism during exercise. Thirty-six healthy adults [15 women; 40 ± 11 years of age; peak oxygen consumption 42.5 ± 9.5 ml (kg body mass)-1 min-1 ; mean ± SD] completed two exercise tests to determine PFO via indirect calorimetry. Resting adipose tissue and/or skeletal muscle biopsies were obtained to determine the adipose tissue protein content of PLIN1, ABHD5 (CGI-58), LIPE (HSL), PNPLA2 (ATGL), ACSL1, CPT1B and oestrogen receptor α (ERα) and the skeletal muscle protein content of FABP 3 (FABPpm), PNPLA2 (ATGL), ACSL1, CTP1B and ESR1 (ERα). Moderate strength correlations were found between PFO [in milligrams per kilogram of fat-free mass (FFM) per minute] and the protein content of PNPLA2 (ATGL) [rs = 0.41 (0.03-0.68), P
Databáze: OpenAIRE