Limiting Properties of the Distribution of Primes in an Arbitrarily Large Number of Residue Classes

Autor: Lucile Devin
Přispěvatelé: Centre de Recherches Mathématiques [Montréal] (CRM), Université de Montréal (UdeM)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Canadian Mathematical Bulletin
Canadian Mathematical Bulletin, 2020, 63 (4), pp.837-849. ⟨10.4153/S0008439520000089⟩
ISSN: 0008-4395
DOI: 10.4153/S0008439520000089⟩
Popis: We generalize current known distribution results on Shanks–Rényi prime number races to the case where arbitrarily many residue classes are involved. Our method handles both the classical case that goes back to Chebyshev and function field analogues developed in the recent years. More precisely, let $\unicode[STIX]{x1D70B}(x;q,a)$ be the number of primes up to $x$ that are congruent to $a$ modulo $q$. For a fixed integer $q$ and distinct invertible congruence classes $a_{0},a_{1},\ldots ,a_{D}$, assuming the generalized Riemann Hypothesis and a weak version of the linear independence hypothesis, we show that the set of real $x$ for which the inequalities $\unicode[STIX]{x1D70B}(x;q,a_{0})>\unicode[STIX]{x1D70B}(x;q,a_{1})>\cdots >\unicode[STIX]{x1D70B}(x;q,a_{D})$ are simultaneously satisfied admits a logarithmic density.
Databáze: OpenAIRE