How much delocalisation is needed for an enhanced area law of the entanglement entropy?
Autor: | Ruth Schulte, Leonid Pastur, Peter E. Müller |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Physics
Quantum Physics 010102 general mathematics Space dimension Complex system FOS: Physical sciences Statistical and Nonlinear Physics Fermi energy Quantum entanglement Mathematical Physics (math-ph) 01 natural sciences Mathematics - Spectral Theory Bernoulli's principle 34L40 81Q10 Law Critical energy 0103 physical sciences FOS: Mathematics 010307 mathematical physics 0101 mathematics Quantum Physics (quant-ph) Entropy (arrow of time) Spectral Theory (math.SP) Mathematical Physics |
Popis: | We consider the random dimer model in one space dimension with Bernoulli disorder. For sufficiently small disorder, we show that the entanglement entropy exhibits at least a logarithmically enhanced area law if the Fermi energy coincides with a critical energy of the model where the localisation length diverges. 29 pages, changes in v3: correction of an error in the appendix in Lemma A.2, typos corrected |
Databáze: | OpenAIRE |
Externí odkaz: |