Photosynthetic fuel for heterologous enzymes: the role of electron carrier proteins
Autor: | Konstantinos Vavitsas, Agnieszka Zygadlo Nielsen, Silas Busck Mellor, Poul Erik Jensen |
---|---|
Rok vydání: | 2017 |
Předmět: |
0301 basic medicine
Cyanobacteria biology Flavodoxin Heterologous Electrons Context (language use) Cell Biology Plant Science General Medicine Photosynthesis biology.organism_classification Biochemistry Enzymes Electron Transport Metabolic engineering 03 medical and health sciences Electron transfer 030104 developmental biology Metabolic Engineering biology.protein Ferredoxin Plant Proteins |
Zdroj: | Photosynthesis Research. 134:329-342 |
ISSN: | 1573-5079 0166-8595 |
Popis: | Plants, cyanobacteria, and algae generate a surplus of redox power through photosynthesis, which makes them attractive for biotechnological exploitations. While central metabolism consumes most of the energy, pathways introduced through metabolic engineering can also tap into this source of reducing power. Recent work on the metabolic engineering of photosynthetic organisms has shown that the electron carriers such as ferredoxin and flavodoxin can be used to couple heterologous enzymes to photosynthetic reducing power. Because these proteins have a plethora of interaction partners and rely on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However, competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic context. |
Databáze: | OpenAIRE |
Externí odkaz: |