Modeling the heating and cooling of a chromophore after photoexcitation
Autor: | Silmar Do monte, Mario Barbatti, Elizete Ventura do Monte, Josene M. Toldo, Mariana Telles do Casal, José Maximiano Pinheiro |
---|---|
Přispěvatelé: | Federal University of Paraíba (UFPB), Institut de Chimie Radicalaire (ICR), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.) |
Rok vydání: | 2022 |
Předmět: |
CYTOSINE
General Physics and Astronomy Physics Atomic Molecular & Chemical RELAXATION DYNAMICS Heating Cytosine Physics::Atomic and Molecular Clusters Physical and Theoretical Chemistry Physics::Chemical Physics Argon ULTRAFAST INTERNAL-CONVERSION DECAY PATHS Quantitative Biology::Biomolecules Physics::Biological Physics SOLVENT Science & Technology Chemistry Physical Physics ENERGY RELAXATION Water Benzene DNA EXCITED-STATE DYNAMICS [CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry Chemistry MOLECULAR-DYNAMICS Physical Sciences Solvents QUANTUM |
Zdroj: | Physical Chemistry Chemical Physics Physical Chemistry Chemical Physics, In press, ⟨10.1039/d2cp00686c⟩ Phys. Chem. Chem. Phys. |
ISSN: | 9403-9410 1463-9076 1463-9084 |
Popis: | The heating of a chromophore due to internal conversion and its cooling down due to energy dissipation to the solvent are crucial phenomena to characterize molecular photoprocesses. In this work, we simulated the ab initio nonadiabatic dynamics of cytosine, a prototypical chromophore undergoing ultrafast internal conversion, in three solvents-argon matrix, benzene, and water-spanning an extensive range of interactions. We implemented an analytical energy-transfer model to analyze these data and extract heating and cooling times. The model accounts for nonadiabatic effects, and excited- and ground-state energy transfer, and can analyze data from any dataset containing kinetic energy as a function of time. Cytosine heats up in the subpicosecond scale and cools down within 25, 4, and 1.3 ps in argon, benzene, and water, respectively. The time constants reveal that a significant fraction of the benzene and water heating occurs while cytosine is still electronically excited. ispartof: PHYSICAL CHEMISTRY CHEMICAL PHYSICS vol:24 issue:16 pages:9403-9410 ispartof: location:England status: published |
Databáze: | OpenAIRE |
Externí odkaz: |