Small cytoplasmic RNAs and their location within the cytoplasm

Autor: R C Bird, B H Sells
Rok vydání: 1987
Předmět:
Zdroj: Biochemistry and Cell Biology. 65:582-587
ISSN: 1208-6002
0829-8211
DOI: 10.1139/o87-075
Popis: These studies were designed to establish the location of various species of small RNAs within the subcellular cytoplasmic compartments. Four cytoplasmic RNA-containing compartments were examined: (A) cytoskeleton-bound polyribosomal ribonucleoprotein (RNP) complexes, (B) soluble-phase polyribosomal RNP complexes, (C) cytoskeleton-bound free RNP complexes, (D) soluble-phase free RNP complexes. The presence of the small cytoplasmic RNA (scRNA) population and histone H4 and actin mRNAs in each compartment was examined to determine their spatial distribution within the cytoplasm. The 7S signal recognition RNA and the 5S and 5.8S rRNAs were distributed among all four compartments, while 4S tRNAs were localized largely in fraction D. Fraction C contained a group of seven abundant scRNAs, of approximately 105-348 nucleotides in length, which were localized almost entirely within the cytoskeleton-bound free RNP compartment. Actin mRNAs were localized in fraction A, the actively translating cytoskeleton-bound compartment. Actin mRNAs were localized in fraction A, the actively translating cytoskeleton-bound compartment. Following cytochalasin B treatment, actin mRNAs were released into the soluble phase, implicating a dependence on the integrity of actin filaments in its binding. Such treatment also released several of the scRNAs from their cytoskeleton-bound location. In contrast histone H4 mRNAs were much more widely dispersed, being present in all four cytoskeletal compartments. Approximately 60% of the H4 mRNAs, however, were localized within the soluble-phase polyribosomes in fraction B. Cytochalasin B treatment released only the small portion of untranslated histone H4 mRNA associated with the cytoskeleton in fraction C, suggesting that the binding of these H4 mRNAs was dependent in some manner upon the integrity of actin filaments.
Databáze: OpenAIRE