Analysis and Characterization of Metallic Nodules on Biochar from Single-Stage Downdraft Gasification
Autor: | Albert Ratner, Tejasvi Sharma |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
020209 energy
Potassium Pellets chemistry.chemical_element Biomass Bioengineering 02 engineering and technology 010501 environmental sciences lcsh:Chemical technology 01 natural sciences lcsh:Chemistry scanning electron microscope (SEM) Biochar 0202 electrical engineering electronic engineering information engineering Chemical Engineering (miscellaneous) lcsh:TP1-1185 biochar 0105 earth and related environmental sciences biomass gasification Chemistry Magnesium Process Chemistry and Technology Phosphorus Copper Nickel lcsh:QD1-999 Environmental chemistry ultimate and proximate analysis Brunauer–Emmert–Teller (BET) analysis |
Zdroj: | Processes Volume 9 Issue 3 Processes, Vol 9, Iss 533, p 533 (2021) |
ISSN: | 2227-9717 |
DOI: | 10.3390/pr9030533 |
Popis: | Biochar, which is a byproduct of gasification, is used in a wide range of fields such as water filtration, agriculture, and electronics, to name a few. The metals in the biomass were thought to end up either in the ash or distributed throughout the biochar. In this study, the goal was a more thorough characterization of biochar resulting from a single-stage downdraft gasifier. One of the first observations was that some metals actually localize into small (~25 micron diameter) metallic nodules on the biochar surface. Further analysis included ultimate and proximate analysis, Brunauer–Emmert–Teller (BET) analysis, and scanning electron microscopy X-ray spectroscopy (SEM-EDS). Biomass fuel included corn grains, soybeans, and wood pellets, with wood biochar showing the highest fixed carbon content, at 91%, and the highest surface area, at 92.4 m2/g. The SEM analysis showed that certain minerals, including potassium, phosphorus, calcium, iron, nickel, silicon, and copper, formed nodules with over 50% metal mass next to pores in the carbon substrate. Aluminum, chlorine, magnesium, and silicon (in certain cases) were mostly uniformly distributed on the biochar carbon substrate. Corn biochar showed a high concentration in the nodules of 9–21% phosphorus and up to 67% potassium. Soybean biochar showed a similar trend with traces of iron and nickel of 2% and 4.1%, respectively, while wood biochar had a significant amount of potassium, up to 35%, along with 44% calcium, 3% iron, and up to 4.2% nickel concentrations. A morphology analysis was also carried out. |
Databáze: | OpenAIRE |
Externí odkaz: |