Integral expressions for Mathieu-type power series and for the Butzer-Flocke-Hauss Ω-function

Autor: Živorad Tomovski, Tibor K. Pogány
Rok vydání: 2011
Předmět:
Zdroj: Fractional Calculus and Applied Analysis. 14:623-634
ISSN: 1311-0454
DOI: 10.2478/s13540-011-0036-2
Popis: In this paper several integral representations for the generalized fractional order Mathieu type power series $S_\mu (r;x) = \sum\limits_{n = 1}^\infty {\frac{{2nx^n }} {{(n^2 + r^2 )^{\mu + 1} }}(r \in \mathbb{R},\mu > 0,|x| \leqslant 1)} $ are presented. Also new integral expressions are derived for the Butzer-Flocke-Hauss (BFH) complete Omega function.
Databáze: OpenAIRE