Integral expressions for Mathieu-type power series and for the Butzer-Flocke-Hauss Ω-function
Autor: | Živorad Tomovski, Tibor K. Pogány |
---|---|
Rok vydání: | 2011 |
Předmět: |
Power series
Confluent hypergeometric function Functional analysis Applied Mathematics Mathematical analysis Order (ring theory) Wright Omega function Function (mathematics) Type (model theory) Generalized Mathieu series Alternating generalized Mathieu series Fourier sine transform Bessel function of the first kind Fox-Wright generalized hypergeometric function Butzer-Flocke-Hauss (BFH) Omega-function Analysis Mathematics Mathematical physics Sine and cosine transforms |
Zdroj: | Fractional Calculus and Applied Analysis. 14:623-634 |
ISSN: | 1311-0454 |
DOI: | 10.2478/s13540-011-0036-2 |
Popis: | In this paper several integral representations for the generalized fractional order Mathieu type power series $S_\mu (r;x) = \sum\limits_{n = 1}^\infty {\frac{{2nx^n }} {{(n^2 + r^2 )^{\mu + 1} }}(r \in \mathbb{R},\mu > 0,|x| \leqslant 1)} $ are presented. Also new integral expressions are derived for the Butzer-Flocke-Hauss (BFH) complete Omega function. |
Databáze: | OpenAIRE |
Externí odkaz: |