Comparison between Mineral Trioxide Aggregate Mixed with Water and Water-based Gel Regarding Shear Bond Strength with Resin-modified Glass Ionomer Cement and Composite
Autor: | Sukhbir Kour, Rudra Kaul, Kumar Manish, Neelu Kumari, Amitu Singh, Ashish Choudhary |
---|---|
Rok vydání: | 2021 |
Předmět: |
chemistry.chemical_classification
Mineral trioxide aggregate Universal testing machine Materials science Silicates Composite number Dental Bonding Glass ionomer cement Water Oxides Resin modified Polymer Calcium Compounds Composite Resins Shear bond Drug Combinations chemistry Distilled water Glass Ionomer Cements Materials Testing Composite material Aluminum Compounds Shear Strength General Dentistry |
Zdroj: | The Journal of Contemporary Dental Practice. 22:353-356 |
ISSN: | 1526-3711 |
Popis: | AIM AND OBJECTIVE To compare between mineral trioxide aggregate (MTA) mixed with water and water-based gel regarding shear bond strength with resin-modified glass ionomer cement (RMGIC) and composite. METHODS AND MATERIALS In this study, 40 blocks of cylindrical shape were prepared with acrylic. These blocks were divided into four groups with each group consisting of 10 blocks: group-1A: MTA + distilled water + composite, group-1B: MTA + distilled water + RMGIC, group-2A: MTA + polymer + composite, and group-2B: RMGIC + MTA + polymer. After that, a universal testing machine was used for the measurement of shear bond strength. The acrylic blocks were placed under this machine. A blade with a knife-edge was used to provide a crosshead speed of 1 mm/minute. This was continued till bond of MTA in both forms (distilled water/gel) and restorative material failed. RESULTS It was observed that a statistically significant difference was found between MTAw + composite and MTAg + composite resin but no statistically significant difference between MTAw + RMGIC and MTAg + RMGIC with p ≥ 0.05. It was found that a statistically significant difference was present between the RMGIC and composite groups within the same MTA type with p ≤ 0.05. CONCLUSION It was concluded from the present study that MTA with a water-based gel has a better shear bond strength than composite resin and RMGIC materials. CLINICAL SIGNIFICANCE It has been found that MTA has different properties when it is mixed with polymer and water. Very few studies have been conducted in the past to compare MTA mixed with water and water-based gel regarding the shear bond strength with RMGIC and composite. |
Databáze: | OpenAIRE |
Externí odkaz: |