Experimental and numerical study on the wavy instability in a Rayleigh-Bénard-Poiseuille flow: non linear effects
Autor: | S Mergui, Xavier Nicolas, F Seychelles |
---|---|
Přispěvatelé: | Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Fluides, automatique, systèmes thermiques (FAST), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), TCM, Laboratoire de Modélisation et Simulation Multi Echelle (MSME), Université Paris-Est Marne-la-Vallée (UPEM)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Marne-la-Vallée (UPEM)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris-Est Marne-la-Vallée (UPEM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris-Est Marne-la-Vallée (UPEM) |
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
History
Perturbation (astronomy) Thermodynamics 02 engineering and technology 01 natural sciences Homogenization (chemistry) Instability 010305 fluids & plasmas Education [SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] Physics::Fluid Dynamics symbols.namesake 0203 mechanical engineering Convective instability 0103 physical sciences [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] Mathematics [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph] Reynolds number Rayleigh number Mechanics Hagen–Poiseuille equation Computer Science Applications 020303 mechanical engineering & transports Amplitude symbols |
Zdroj: | Journal of Physics: Conference Series 6th European Thermal Sciences Conference-Eurotherm 2012 6th European Thermal Sciences Conference-Eurotherm 2012, Sep 2012, Poitiers, Futuroscope, France. pp.012101, ⟨10.1088/1742-6596/395/1/012101⟩ |
DOI: | 10.1088/1742-6596/395/1/012101⟩ |
Popis: | International audience; A combined experimental and numerical study of a Rayleigh-Bénard-Poiseuille air flow in a rectangular channel is presented. The aim of the present paper is to characterize a secondary instability, referred to as wavy instability and known to be a convective instability, with the objective to identify the best situation for an optimal homogenization of heat transfers in the system. A periodic mechanical excitation is introduced at channel inlet and the spatial and temporal evolution of the temperature fluctuations are analyzed, depending on the Rayleigh number, the frequency and the amplitude of the perturbation. The Reynolds number is fixed. As the saturated state is a priori the best situation to homogenize the transfers, the objective is to expand the saturation area and to generate a maximum saturation amplitude value. It is shown that the best choice is a high Rayleigh number or/and a large magnitude of perturbation associated with a specific low value of the forcing frequency. |
Databáze: | OpenAIRE |
Externí odkaz: |