On the simultaneous 3-divisibility of class numbers of triples of imaginary quadratic fields
Autor: | Jaitra Chattopadhyay, S. Muthukrishnan |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Acta Arithmetica. 197:105-110 |
ISSN: | 1730-6264 0065-1036 |
DOI: | 10.4064/aa200221-16-6 |
Popis: | Let $k \geq 1$ be a cube-free integer with $k \equiv 1 \pmod {9}$ and $\gcd(k, 7\cdot 571)=1$. In this paper, we prove the existence of infinitely many triples of imaginary quadratic fields $\mathbb{Q}(\sqrt{d})$, $\mathbb{Q}(\sqrt{d+1})$ and $\mathbb{Q}(\sqrt{d+k^2})$ with $d \in \mathbb{Z}$ such that the class number of each of them is divisible by $3$. This affirmatively answers a weaker version of a conjecture of Iizuka \cite{iizuka-jnt}. To appear in Acta Arithmetica |
Databáze: | OpenAIRE |
Externí odkaz: |