On the simultaneous 3-divisibility of class numbers of triples of imaginary quadratic fields

Autor: Jaitra Chattopadhyay, S. Muthukrishnan
Rok vydání: 2021
Předmět:
Zdroj: Acta Arithmetica. 197:105-110
ISSN: 1730-6264
0065-1036
DOI: 10.4064/aa200221-16-6
Popis: Let $k \geq 1$ be a cube-free integer with $k \equiv 1 \pmod {9}$ and $\gcd(k, 7\cdot 571)=1$. In this paper, we prove the existence of infinitely many triples of imaginary quadratic fields $\mathbb{Q}(\sqrt{d})$, $\mathbb{Q}(\sqrt{d+1})$ and $\mathbb{Q}(\sqrt{d+k^2})$ with $d \in \mathbb{Z}$ such that the class number of each of them is divisible by $3$. This affirmatively answers a weaker version of a conjecture of Iizuka \cite{iizuka-jnt}.
To appear in Acta Arithmetica
Databáze: OpenAIRE