Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices
Autor: | Bi, Lei, Hu, Juejun, Jiang, Peng, Kim, Hyun Suk, Kim, Dong Hun, Onbasli, Mehmet Cengiz, Dionne, Gerald F., Ross, Caroline A. |
---|---|
Přispěvatelé: | Lincoln Laboratory, Massachusetts Institute of Technology. Department of Materials Science and Engineering, Jiang, Peng, Kim, Hyun Suk, Kim, Dong Hun, Onbasli, Mehmet Cengiz, Dionne, Gerald F., Ross, Caroline A. |
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Materials science
Optical isolator Silicon Hybrid silicon laser chemistry.chemical_element optical isolator Review 02 engineering and technology Epitaxy 7. Clean energy 01 natural sciences lcsh:Technology law.invention symbols.namesake monolithic integration magneto-optics law 0103 physical sciences Faraday effect optical resonator General Materials Science Thin film lcsh:Microscopy lcsh:QC120-168.85 010302 applied physics lcsh:QH201-278.5 business.industry lcsh:T 021001 nanoscience & nanotechnology Semiconductor magnetic oxides chemistry thin films lcsh:TA1-2040 symbols Optoelectronics lcsh:Descriptive and experimental mechanics lcsh:Electrical engineering. Electronics. Nuclear engineering Photonics 0210 nano-technology business lcsh:Engineering (General). Civil engineering (General) lcsh:TK1-9971 |
Zdroj: | Materials, Vol 6, Iss 11, Pp 5094-5117 (2013) Materials MDPI Publishing |
ISSN: | 1996-1944 |
Popis: | Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon. We demonstrate high Faraday rotation at telecommunication wavelengths in several novel magnetooptical oxide thin films including Co substituted CeO2−δ, Co- or Fe-substituted SrTiO3−δ, as well as polycrystalline garnets on silicon. Figures of merit of 3~4 deg/dB and 21 deg/dB are achieved in epitaxial Sr(Ti0.2Ga0.4Fe0.4)O3−δ and polycrystalline (CeY2)Fe5O12 films, respectively. We also demonstrate an optical isolator on silicon, based on a racetrack resonator using polycrystalline (CeY2)Fe5O12/silicon strip-loaded waveguides. Our work demonstrates that physical vapor deposited magneto-optical oxide thin films on silicon can achieve high Faraday rotation, low optical loss and high magneto-optical figure of merit, therefore enabling novel high-performance non-reciprocal photonic devices monolithically integrated on semiconductor substrates. National Science Foundation (U.S.). Division of Materials Research (Grant No. DMR 0604430) National Science Foundation (U.S.). Division of Materials Research (Grant No. 1231392, Electronic, Photonic, and Magnetic Devices Program) |
Databáze: | OpenAIRE |
Externí odkaz: |