Model-based occlusion disentanglement for image-to-image translation

Autor: Pietro Cerri, Fabio Pizzati, Raoul de Charette
Přispěvatelé: Robotics & Intelligent Transportation Systems (RITS), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), VisLab, Pizzati, Fabio
Jazyk: angličtina
Rok vydání: 2020
Předmět:
FOS: Computer and information sciences
Computer Science - Machine Learning
Computer science
Computer Vision and Pattern Recognition (cs.CV)
Computer Science - Computer Vision and Pattern Recognition
ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
02 engineering and technology
010501 environmental sciences
Translation (geometry)
01 natural sciences
GeneralLiterature_MISCELLANEOUS
Image (mathematics)
Machine Learning (cs.LG)
Soil
Occlusions
[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
Raindrop
Occlusion
0202 electrical engineering
electronic engineering
information engineering

FOS: Electrical engineering
electronic engineering
information engineering

Computer vision
Image-to-image translation
0105 earth and related environmental sciences
ComputingMethodologies_COMPUTERGRAPHICS
business.industry
Image and Video Processing (eess.IV)
[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
Dirt
Electrical Engineering and Systems Science - Image and Video Processing
Pipeline (software)
GAN
Image translation
020201 artificial intelligence & image processing
Artificial intelligence
business
Zdroj: ECCV 2020-European Conference on Computer Vision
ECCV 2020-European Conference on Computer Vision, Aug 2020, Glasgow / Virtual, United Kingdom
Computer Vision – ECCV 2020 ISBN: 9783030585648
ECCV (20)
Popis: Image-to-image translation is affected by entanglement phenomena, which may occur in case of target data encompassing occlusions such as raindrops, dirt, etc. Our unsupervised model-based learning disentangles scene and occlusions, while benefiting from an adversarial pipeline to regress physical parameters of the occlusion model. The experiments demonstrate our method is able to handle varying types of occlusions and generate highly realistic translations, qualitatively and quantitatively outperforming the state-of-the-art on multiple datasets.
ECCV 2020
Databáze: OpenAIRE