Loop Groups and QNEC

Autor: Lorenzo Panebianco
Rok vydání: 2021
Předmět:
Zdroj: Communications in Mathematical Physics. 387:397-426
ISSN: 1432-0916
0010-3616
DOI: 10.1007/s00220-021-04170-3
Popis: We construct and study solitonic representations of the conformal net associated to some vacuum Positive Energy Representation (PER) of a loop group LG. For the corresponding solitonic states, we prove the Quantum Null Energy Condition (QNEC) and the Bekenstein Bound. As an intermediate result, we show that a Positive Energy Representation of a loop group LG can be extended to a PER of $$H^{s}(S^1,G)$$ H s ( S 1 , G ) for $$s>3/2$$ s > 3 / 2 , where G is any compact, simple and simply connected Lie group. We also show the existence of the exponential map of the semidirect product $$LG \rtimes R$$ L G ⋊ R , with R a one-parameter subgroup of $$\mathrm{Diff}_+(S^1)$$ Diff + ( S 1 ) , and we compute the adjoint action of $$H^{s+1}(S^1,G)$$ H s + 1 ( S 1 , G ) on the stress energy tensor.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje