Isomorphism and Mutual Transformations of S-Bearing Components in Feldspathoids with Microporous Structures

Autor: Nikita V. Chukanov, Nadezhda V. Shchipalkina, Roman Yu. Shendrik, Marina F. Vigasina, Vladimir L. Tauson, Sergey V. Lipko, Dmitry A. Varlamov, Vasiliy D. Shcherbakov, Anatoly N. Sapozhnikov, Anatoly V. Kasatkin, Natalia V. Zubkova, Igor V. Pekov
Rok vydání: 2022
Předmět:
Zdroj: Minerals; Volume 12; Issue 11; Pages: 1456
ISSN: 2075-163X
DOI: 10.3390/min12111456
Popis: The isomorphism of S-bearing feldspathoids belonging to the cancrinite, sodalite, tugtupite, vladimirivanovite, bystrite, marinellite and scapolite structure types has been investigated using a multimethodical approach based on infrared, Raman and electron spin resonance (ESR), as well as ultraviolet, visible and near infrared (UV–Vis–near IR) absorption spectroscopy methods and involving chemical and X-ray diffraction data. Sapozhnikovite Na8(Al6Si6O24)(HS)2 and sulfite and thiosulfate analogues of cancrinite are synthesized hydrothermally and characterized by means of electron microprobe analyses, powder X-ray diffraction and Raman spectroscopy. The possibility of the incorporation of significant amounts of SO42−, S4 and SO32− in the crystal structures of cancrisilite, sulfhydrylbystrite and marinellite, respectively, has been established for the first time. Thermal conversions of S-bearing groups in the synthetic sulfite cancrinite and sapozhnikovite analogues as well as natural vladinirivanovite and S4-bearing haüyne under oxidizing and reducing conditions have been studied using the multimethodical approach. The SO42− and S2− anions and the S3•– radical anion are the most stable S-bearing species under high-temperature conditions (in the range of 700–800 °C); their ratio in the heated samples is determined by the redox conditions and charge-balance requirement. The HS− and S52− anions are stable only under highly reducing conditions.
Databáze: OpenAIRE