A novelty optimization approach for drilling of CFRP nanocomposite laminates
Autor: | Halil Burak Kaybal, Ali Ünüvar, Murat Koyunbakan, Ahmet Avcı |
---|---|
Rok vydání: | 2018 |
Předmět: |
Optimization
Machinability 0209 industrial biotechnology Materials science Drilling Thrust Force 02 engineering and technology Industrial and Manufacturing Engineering Taguchi methods 020901 industrial engineering & automation Machining Taguchi Methods CFRP Composite material Tool wear Nanocomposite Mechanical Engineering Delamination RSM Epoxy Composite laminates Computer Science Applications Control and Systems Engineering visual_art visual_art.visual_art_medium Software |
Zdroj: | The International Journal of Advanced Manufacturing Technology. 100:2995-3012 |
ISSN: | 1433-3015 0268-3768 |
DOI: | 10.1007/s00170-018-2873-1 |
Popis: | Numerous problems are encountered in drilling of carbon fiber-reinforced polymer composite materials (CFRP) such as delamination, tool wear etc. Delamination has been recognized as a major damage encountered when drilling composite laminates. In the present study, machinability and the effects of cutting speed and feed rate upon thrust force and delamination formation in carbon nano tube (CNT)-added carbon fiber-reinforced plastics (CFRP) and CFRP were investigated. With this purpose, the experiments were planned. The response surface analysis has been carried out to study the main and the interaction effects of the machining parameters. By using the Taguchi method, cutting parameters’ degrees of influence were determined. A new multi-objective optimization for the appropriate drilling process of these composite materials was proposed and an analytical optimization technique was applied. Appropriate cutting parameters of thrust force and delamination factor were found and the optimization results showed that the combination of low feed rate with high cutting speed is necessary to minimize delamination in drilling of CFRP.The machinability refers to the relative ease or difficulty under certain cutting conditions. So, it is very important to understand the factors that affect the machinability and to evaluate their effects. Machinability of Epoxy/CF and CNT-Epoxy/CF was investigated. It was aimed to evaluate the machinability of these materials. A new machinability index has been developed in current study. It was found out that machinability of Epoxy/CF is better than CNT-Epoxy/CF. |
Databáze: | OpenAIRE |
Externí odkaz: |