Remnant kidney hypermetabolism and progression of chronic renal failure

Autor: L. Chan, D. C. H. Harris, Robert W. Schrier
Rok vydání: 1988
Předmět:
Zdroj: American Journal of Physiology-Renal Physiology. 254:F267-F276
ISSN: 1522-1466
1931-857X
DOI: 10.1152/ajprenal.1988.254.2.f267
Popis: To investigate the mechanisms whereby verapamil and dietary phosphate restriction slow progression of nephron loss after renal ablation, the effects of these maneuvers on inulin clearance (CIn), net sodium reabsorption (TNa+), oxygen consumption (QO2), and net glucose production (GP) were examined in isolated perfused normal and remnant kidneys. Preliminary studies characterized the isolated perfused remnant kidney perfusion. Adaptation to renal ablation was greater for QO2 (102% of normal), GP (138%), and kidney weight (79%) than CIn (51%) or TNa+ (40%). Verapamil (50 microM) lowered QO2 in remnant kidneys (1.64 +/- 0.24 vs. control 2.86 +/- 0.16 mumol.min-1.g-1, P less than 0.005), as did phosphate restriction (1.81 +/- 0.22 vs. control 3.05 +/- 0.40 mumol.min-1.g-1, P less than 0.05). These effects could not be accounted for by changes in CIn, TNa+, or GP and were not observed in normal kidneys. In summary 1) remnant kidneys are hypermetabolic compared with normal kidneys when assessed by QO2 and GP; 2) verapamil and phosphate restriction diminish the enhanced metabolic activity of remnant kidneys, an effect that is independent of TNa+; and thus 3) verapamil and phosphate restriction may slow progression of renal disease, at least in part by reducing renal metabolic demands.
Databáze: OpenAIRE