Approximate matrix and tensor diagonalization by unitary transformations: convergence of Jacobi-type algorithms
Autor: | Konstantin Usevich, Pierre Comon, Jianze Li |
---|---|
Přispěvatelé: | Centre de Recherche en Automatique de Nancy (CRAN), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong (SRIBD), GIPSA Pôle Géométrie, Apprentissage, Information et Algorithmes (GIPSA-GAIA), Grenoble Images Parole Signal Automatique (GIPSA-lab), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), ANR-19-CE23-0021,LeaFleT,Apprentissage des réseaux de neurones avec des fonctions d'activation flexibles par les méthodes tensorielles(2019), European Project: 320594,EC:FP7:ERC,ERC-2012-ADG_20120216,DECODA(2013), European Project: 11601371, GIPSA - Communication Information and Complex Systems (GIPSA-CICS [2010-2015]), Département Images et Signal (GIPSA-DIS [2007-2015]), Grenoble Images Parole Signal Automatique (GIPSA-lab [2007-2015]), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Centre National de la Recherche Scientifique (CNRS)-Grenoble Images Parole Signal Automatique (GIPSA-lab [2007-2015]), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Centre National de la Recherche Scientifique (CNRS), PNRIA, ANR-19-CE23-0021,LeaFleT,LEArning neural networks with FLExible nonlinearities by Tensor methods |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
010103 numerical & computational mathematics
02 engineering and technology 01 natural sciences Unitary state Theoretical Computer Science symbols.namesake Matrix (mathematics) Unitary group Convergence (routing) unitary group FOS: Mathematics 0202 electrical engineering electronic engineering information engineering Mathematics - Numerical Analysis Tensor 0101 mathematics Mathematics - Optimization and Control Mathematics 90C30 53B21 53B20 15A69 65K10 65Y20 Weak convergence Lojasiewicz gradient inequality 020206 networking & telecommunications Numerical Analysis (math.NA) Givens rotations optimization on manifolds Local convergence Jacobi eigenvalue algorithm Optimization and Control (math.OC) symbols local convergence approximate tensor diagonalization [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] Algorithm Software [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] |
Zdroj: | SIAM Journal on Optimization SIAM Journal on Optimization, Society for Industrial and Applied Mathematics, 2020, 30 (4), pp.2998-3028. ⟨10.1137/19M125950X⟩ SIAM Journal on Optimization, 2020, 30 (4), pp.2998-3028. ⟨10.1137/19M125950X⟩ |
ISSN: | 1052-6234 |
DOI: | 10.1137/19M125950X⟩ |
Popis: | International audience; We propose a gradient-based Jacobi algorithm for a class of maximization problems on the unitary group, with a focus on approximate diagonalization of complex matrices and tensors by unitary transformations. We provide weak convergence results, and prove local linear convergence of this algorithm. The convergence results also apply to the case of real-valued tensors. |
Databáze: | OpenAIRE |
Externí odkaz: |