Model-based 3D object detection from multivariate confocal microscopy images

Autor: Christine Graffigne, Juhui Wang, Alain Trubuil, B. Kaeffer
Přispěvatelé: Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS), Graffigne, Christine, Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS )
Jazyk: angličtina
Rok vydání: 2002
Předmět:
Zdroj: ICIP'02
International Conference on Image Processing
International Conference on Image Processing, 2002, Rochester, United States. pp.1
ICIP (2)
International Conference on Image Processing, 2002, Rochester, United States. pp.1, 2002
Popis: The paper addresses the problem of both prior modeling and object labeling in multivariate microscopy imaging. We make use of a statistical, nonparametric framework to formulate the prior knowledge on microscopy imaging and a model validation technique to achieve the object detection and labeling goal. The approach has been applied in investigations of spatial distribution of nuclei within the colonic glands of rats observed with the help of confocal fluorescence microscopy.
Databáze: OpenAIRE