Developmental timing of programmed DNA elimination in $Paramecium\ tetraurelia$ recapitulates germline transposon evolutionary dynamics

Autor: Coralie Zangarelli, Olivier Arnaiz, Mickaël Bourge, Kevin Gorrichon, Yan Jaszczyszyn, Nathalie Mathy, Loïc Escoriza, Mireille Bétermier, Vinciane Régnier
Přispěvatelé: Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Reproduction et développement des plantes (RDP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut Universitaire du Cancer de Toulouse - Oncopole (IUCT Oncopole - UMR 1037), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Institut National de la Santé et de la Recherche Médicale (INSERM), UFR Sciences du Vivant [Sciences] - Université Paris Cité (UFR SDV UPCité), Université Paris Cité (UPCité), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Institut National de la Santé et de la Recherche Médicale (INSERM), Bétermier, Mireille
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Genome Research
Genome Research, 2022, 2022, ⟨10.1101/gr.277027.122⟩
ISSN: 1088-9051
1549-5469
Popis: With its nuclear dualism, the ciliate Paramecium constitutes an original model to study how host genomes cope with transposable elements (TEs). P. tetraurelia harbors two germline micronuclei (MIC) and a polyploid somatic macronucleus (MAC) that develops from the MIC at each sexual cycle. Throughout evolution, the MIC genome has been continuously colonized by TEs and related sequences that are removed from the somatic genome during MAC development. Whereas TE elimination is generally imprecise, excision of ∼45,000 TE-derived Internal Eliminated Sequences (IESs) is precise, allowing for functional gene assembly. Programmed DNA elimination is concomitant with genome amplification. It is guided by non-coding RNAs and repressive chromatin marks. A subset of IESs is excised independently of this epigenetic control, raising the question of how IESs are targeted for elimination. To gain insight into the determinants of IES excision, we established the developmental timing of DNA elimination genome-wide by combining fluorescence-assisted nuclear sorting with next-generation sequencing. Essentially all IESs are excised within only one endoreplication round (32C to 64C), while TEs are eliminated at a later stage. We show that time, rather than replication, controls the progression of DNA elimination. We defined four IES classes according to excision timing. The earliest excised IESs tend to be independent of epigenetic factors, display strong sequence signals at their ends and originate from the most ancient integration events. We conclude that old IESs have been optimized during evolution for early and accurate excision, by acquiring stronger sequence determinants and escaping epigenetic control.
Databáze: OpenAIRE