Ex vivo magnetic resonance angiography to explore placental vascular anatomy

Autor: Bailiang Chen, Romain Tonnelet, Marine Beaumont, Anne-Claire Chabot-Lecoanet, Oliver Morel, Huanrong Lu, J. Duan
Přispěvatelé: Centre d'Investigation Clinique - Innovation Technologique [Nancy] (CIC-IT), Centre d'investigation clinique [Nancy] (CIC), Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lorraine (UL)-Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lorraine (UL), Imagerie Adaptative Diagnostique et Interventionnelle (IADI), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lorraine (UL), Centre d'investigation clinique plurithématique Pierre Drouin [Nancy] (CIC-P), Maternité Régionale Adolphe Pinard [Nancy], Service de neurologie [CHRU Nancy], Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy)
Rok vydání: 2017
Předmět:
Zdroj: Placenta
Placenta, Elsevier, 2017, 58, pp.40-45. ⟨10.1016/j.placenta.2017.08.002⟩
ISSN: 1532-3102
0143-4004
Popis: Introduction A normal placenta development is crucial for a successful pregnancy. In case of major obstetric complications such as intra-uterine growth restriction, the placental vascularization morphological alteration at macroscopic level is less known than that at microscopic scale. Ex vivo MRA has the potential to visualize whole fresh human placental vasculature fast and efficiently but can be hampered by contrast agent extravasation problem. This study aimed to provide an optimized ex vivo MRA protocol to acquire understanding of global human placenta vasculature morphology. Methods Six fresh normal human placentas were imaged with two contrast agents (i.e. Gd-chelate and pump oil) using different imaging parameters on a 3T clinical MR scanner (GE). The contrast to noise ratio, signal to noise ratio and enhancement efficiency were assessed in order to decide which contrast agent and imaging protocol was better. In the end, morphology indices were measured based on the 3D vasculature models reconstructed from the placentas imaged with the optimized protocol. Results With the same imaging parameters, the CNR and the enhancement efficiency of images enhanced with pump oil were superior to those using Gd-chelate. Enhanced by pump oil, an optimized ex vivo MRA protocol was determined, leading to a clear 3D visualization and reconstruction of human placenta vascularization. Discussion The proposed ex viv o MRA method is easy to manipulate, and can be used to investigate the human placental vasculature morphology. The acquired data are of good quality and can be used for characterization of placenta vascularization morphology.
Databáze: OpenAIRE