Toward n-type analogues to poly(3-alkylthiophene)s: influence of side-chain variation on bulk-morphology and electron transport characteristics of head-to-tail regioregular poly(4-alkylthiazole)s
Autor: | Marta Urdanpilleta, Jakob Jäger, Frank Pammer, Nadine Tchamba Yimga, Elizabeth von Hauff |
---|---|
Přispěvatelé: | LaserLaB - Energy, Photo Conversion Materials |
Rok vydání: | 2016 |
Předmět: |
chemistry.chemical_classification
Materials science Annealing (metallurgy) 02 engineering and technology General Chemistry Polymer Electron Conjugated system 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences Electron transport chain 0104 chemical sciences law.invention Crystallography chemistry law Polymer chemistry Materials Chemistry Side chain Crystallization Solubility 0210 nano-technology |
Zdroj: | Journal of Materials Chemistry, 4(13), 2587-2597. Royal Society of Chemistry Jaeger, J, Yimga, N T, Urdanpilleta, M, von Hauff, E L & Pammer, F 2016, ' Toward n-type analogues to poly(3-alkylthiophene)s: influence of side-chain variation on bulk-morphology and electron transport characteristics of head-to-tail regioregular poly(4-alkylthiazole)s ', Journal of Materials Chemistry, vol. 4, no. 13, pp. 2587-2597 . https://doi.org/10.1039/c5tc04251h |
ISSN: | 2050-7534 2050-7526 0959-9428 |
DOI: | 10.1039/c5tc04251h |
Popis: | Series of three new highly head-to-tail regioregular poly(4-alkylthiazole)s (PTzTIB, PTzTNB, and PTzTHX) equipped with different trialkylsilyloxymethyl (R3SiOCH2–) side-chains have been prepared (PTzTIB: R = isobutyl, PTzTNB: R = n-butyl, PTzTHX: R = n-hexyl). The polymers exhibit very similar optical and electronic properties, in agreement with the isoelectronic nature of their respective conjugated systems. However, bulk properties, such as (in)solubility, melting behavior and solid-state morphology are strongly affected by the nature of the side-chains. PTzTHX in particular can be readily crystallized through annealing, and exhibits a remarkable tendency to self-organize into crystalline lamellae, that are 50–100 nm wide, and up to 10 μm in length, as demonstrated by investigation of polymer films via GIXD, and AFM and SEM-imaging. Electrical characterization of PTzTNB and PTzTHX in hole-only- and electron-only devices show electron mobilities to be consistently higher than hole mobilities with maximum mobilities of μe = 6.4 × 10−4 cm2 V−1 s−1 observed for PTzTHX and μe = 2.7 × 10−4 cm2 V−1 s−1 for PTzTNB. PTzTHX outperforms the less crystalline PTzTNB despite the higher bulk of insulating side-chains. Furthermore, electron-mobilities of PTzTHX are shown to correlate both with the molecular weight and the crystallization after annealing. |
Databáze: | OpenAIRE |
Externí odkaz: |