Factor Analysis of Dynamic Sequence with Spatial Prior for 2D Cardiac Spect Sequences Analysis

Autor: Eric Moisan, Pascale Perret, Daniel Fagret, Marc Filippi, Michel Desvignes, Catherine Ghezzi
Přispěvatelé: GIPSA - Communication Information and Complex Systems (GIPSA-CICS), Département Images et Signal (GIPSA-DIS), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Radiopharmaceutiques biocliniques (LRB), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Filippi, Marc
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Lecture Notes in Computer Science
ACIVS 2016-International Conference on Advanced Concepts for Intelligent Vision Systems
ACIVS 2016-International Conference on Advanced Concepts for Intelligent Vision Systems, Oct 2016, Lecce, Italy. pp.228-237, ⟨10.1007/978-3-319-48680-2_21⟩
Advanced Concepts for Intelligent Vision Systems ISBN: 9783319486796
ACIVS
DOI: 10.1007/978-3-319-48680-2_21⟩
Popis: International audience; Unmixing is often a necessary step to analyze 2D SPECT image sequence. However, factor analysis of dynamic sequences (FADS), the commonly used method for unmixing SPECT sequences, suffers from non-uniqueness issue. Optimization-based methods were developed to overcome this issue. These methods are effective but need improvement when the mixing is important or with very low SNR. In this paper, a new objective function using soft spatial prior knowledge is developed. Comparison with previous methods, efficiency and robustness to the choice of priors are illustrated with tests on synthetic dataset. Results on 2D SPECT sequences with high level of noise are also presented and compared.
Databáze: OpenAIRE