Competitive displacement of drugs from cyclodextrin inclusion complex by polypseudorotaxane formation with poloxamer: Implications in drug solubilization and delivery
Autor: | Eduardo Sobarzo-Sánchez, José Luis Gómez-Amoza, Luis Nogueiras-Nieto, Francisco J. Otero-Espinar |
---|---|
Rok vydání: | 2012 |
Předmět: |
Magnetic Resonance Spectroscopy
Rotaxanes Polymers Pyridones Chemistry Pharmaceutical Pharmaceutical Science Poloxamer Polypropylenes Triamcinolone Acetonide Drug Delivery Systems Drug Stability medicine Organic chemistry Solubility Ciclopirox Olamine chemistry.chemical_classification Cyclodextrin beta-Cyclodextrins Hydrogels General Medicine Ciclopirox Combinatorial chemistry Controlled release chemistry Poloxamer 407 Self-healing hydrogels Drug delivery Polyethylenes Biotechnology medicine.drug |
Zdroj: | European Journal of Pharmaceutics and Biopharmaceutics. 80:585-595 |
ISSN: | 0939-6411 |
DOI: | 10.1016/j.ejpb.2011.12.001 |
Popis: | The competitive interactions between the poly-[propylene oxide] (POO)–poly-[ethylene oxide] (PEO) block copolymer poloxamer 407 (Pluronic F127) and two drugs, triamcinolone acetonide and ciclopirox olamine, by the formation of inclusion complexes with two cyclodextrin hydrophilic derivatives, hydroxypropyl-β-cyclodextrin (HPβCD; molar substitution (MS) 0.65) and partially methylated-β-cyclodextrin (MβCD; MS 0.57), were studied by means of one-dimensional 1 H NMR, 2D ROESY experiments, solubility studies and drug release studies. 1D and 2D NMR and solubility studies indicate that both triamcinolone acetonide and ciclopirox olamine form stable inclusion complexes with the cyclodextrin derivatives. In the case of ciclopirox olamine the complex was more stable at pH 1. Effective complexation of poloxamer with the two cyclodextrins (CDs) was also evidenced by NMR analysis, and competitive displacement of the drugs from the CD cavity by the polymer was observed. Drug solubility in CD solutions was not modified by the addition of polymers, indicating that a decrease in solubility due to the competitive displacement is probably compensated by the solubilizing effect of polymer micellization. Finally, polypseudorotaxanes formation has a significant influence on the release of the drugs studied. Changes in the release rate depend on the stability of drug–CD inclusion complex and on cyclodextrin concentration in the bulk solution; so polypseudorotaxane formation can be employed to modulate drug controlled release from thermosensitive hydrogels. |
Databáze: | OpenAIRE |
Externí odkaz: |