Compact Representations of Preferences
Autor: | Jérôme Lang, Patrice Perny, Souhila Kaci |
---|---|
Přispěvatelé: | Système Multi-agent, Interaction, Langage, Evolution (SMILE), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL), DECISION, LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Marquis, Pierre, Papini, Odile, Prade, Henri |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Generality
Class (set theory) Theoretical computer science Computer science Representation (systemics) 02 engineering and technology 16. Peace & justice CP nets GAI nets 020204 information systems Logical Representations Preferences 0202 electrical engineering electronic engineering information engineering Independence (mathematical logic) Graph (abstract data type) 020201 artificial intelligence & image processing [INFO]Computer Science [cs] Preference (economics) Value (mathematics) |
Zdroj: | A Guided Tour of Artificial Intelligence Research Marquis, Pierre; Papini, Odile; Prade, Henri. A Guided Tour of Artificial Intelligence Research, Volume I, Springer, pp.217-252, 2020, Knowledge Representation, Reasoning and Learning, 978-3-030-06164-7. ⟨10.1007/978-3-030-06164-7_7⟩ A Guided Tour of Artificial Intelligence Research ISBN: 9783030061630 |
Popis: | International audience; This chapter presents the main families of representation languages for preferences on combinatorial domains (composed by several attributes or variables with discrete value domains). In the first part of the chapter, we present the problem in its full generality. A large part of these languages are said to be graphical, because they work by expressing elementary preferences in a local way, using structural independence properties that are represented under the form of a graph. In the second (respectively, third) part of the chapter we review graphical languages for expressing ordinal (respectively, cardinal) preferences. Another class of preference representation languages makes use of (propositional) logic; they will be reviewed in the fourth part of the chapter, together with proper ‘preference logics’. |
Databáze: | OpenAIRE |
Externí odkaz: |