Hydrodeoxygenation of pyrolysis oil fractions: process understanding and quality assessment through co-processing in refinery units
Autor: | De Miguel Mercader, F., de Miguel Mercader, Ferran, Groeneveld, M.J., Kersten, Sascha R.A., Geantet, Christophe, Toussaint, Guy, Way, Nico W.J., Schaverien, Colin J., Hogendoorn, Kees |
---|---|
Přispěvatelé: | Sustainable Process Technology, Faculty of Science and Technology, Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC) |
Rok vydání: | 2011 |
Předmět: |
Fraction (chemistry)
02 engineering and technology 010402 general chemistry Fluid catalytic cracking 01 natural sciences Catalysis chemistry.chemical_compound Pyrolysis oil Environmental Chemistry Organic chemistry Renewable Energy Sustainability and the Environment Chemistry Co-processing [CHIM.CATA]Chemical Sciences/Catalysis Fuel oil 021001 nanoscience & nanotechnology [SDE.ES]Environmental Sciences/Environmental and Society Pollution 0104 chemical sciences Nuclear Energy and Engineering Chemical engineering METIS-276822 IR-104484 0210 nano-technology Hydrodesulfurization Hydrodeoxygenation |
Zdroj: | Energy & environmental science, 4(3), 985-997. Royal Society of Chemistry Energy Energy, Elsevier, 2011, 4, pp.985-997. ⟨10.1039/c0ee00523a⟩ |
ISSN: | 1754-5706 1754-5692 0360-5442 |
DOI: | 10.1039/c0ee00523a |
Popis: | 3 Mercader, Ferran de Miguel Groeneveld, Michiel J. Kersten, Sascha R. A. Geantet, Christophe Toussaint, Guy Way, Nico W. J. Schaverien, Colin J. Hogendoorn, Kees J. A.; Hydrodeoxygenation (HDO) of pyrolysis oil fractions was studied to better understand the HDO of whole pyrolysis oil and to assess the possibility to use individual upgrading routes for these fractions. By mixing pyrolysis oil and water in a 2 : 1 weight ratio, two fractions were obtained: an oil fraction (OFWA) containing 32 wt% of the organics from the whole oil and an aqueous fraction water addition (AFWA) with the remaining organics. These fractions (and also the whole pyrolysis oil as the reference) were treated under HDO conditions at different temperatures (220, 270 and 310 degrees C), a constant total pressure of 190 bar, and using 5 wt% Ru/C catalyst. An oil product phase was obtained from all the feedstocks; even from AFWA, 29 wt% oil yield was obtained. Quality parameters (such as coking tendency and H/C) for the resulting HDO oils differed considerably, with the quality of the oil from AFWA being the highest. These HDO oils were evaluated by co-processing with an excess of fossil feeds in catalytic cracking and hydrodesulfurisation (HDS) lab-scale units. All co-processing experiments were successfully conducted without operational problems. Despite the quality differences of the (pure) HDO oils, the product yields upon catalytic cracking of their blends with Long Residue were similar. During co-processing of HDO oils and straight run gas oil in a HDS unit, competition between HDS and HDO reactions was observed without permanent catalyst deactivation. The resulting molecular weight distribution of the co-processed HDO/fossil oil was similar to when hydrotreating only fossil oil and independent of the origin of the HDO oil. |
Databáze: | OpenAIRE |
Externí odkaz: |