Lagrangian formulation for electric charge in a magnetic monopole distribution
Autor: | Allen Stern, Franco Ventriglia, Giuseppe Marmo, Emanuela Scardapane, Patrizia Vitale |
---|---|
Přispěvatelé: | Marmo, G., Scardapane, Emanuela, Stern, A., Ventriglia, Franco, Vitale, Patrizia |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
High Energy Physics - Theory
Physics 010308 nuclear & particles physics Magnetic monopole FOS: Physical sciences 01 natural sciences Electric charge Legendre transformation symbols.namesake High Energy Physics - Theory (hep-th) 0103 physical sciences symbols Covariant transformation Configuration space Gauge theory 010306 general physics Hamiltonian (quantum mechanics) Mathematics::Symplectic Geometry Mathematical physics Gauge symmetry |
Zdroj: | Physical Review |
Popis: | We give a Lagrangian description of an electric charge in a field sourced by a continuous magnetic monopole distribution. The description is made possible thanks to a doubling of the configuration space. The Legendre transform of the nonrelativistic Lagrangian agrees with the Hamiltonian description given recently by Kupriyanov and Szabo. The covariant relativistic version of the Lagrangian is shown to introduce a new gauge symmetry, in addition to standard reparametrizations. The generalization of the system to open strings coupled to a magnetic monopole distribution is also given, as well as the generalization to particles in a non-Abelian gauge field which does not satisfy Bianchi identities in some region of the space-time. Comment: 16 pages |
Databáze: | OpenAIRE |
Externí odkaz: |