Evolution of real area of contact due to combined normal load and sub-surface straining in sheet metal
Autor: | Tanmaya Mishra, Javad Hazrati, Meghshyam Shisode, Matthijn B. de Rooij, Ton van den Boogaard |
---|---|
Přispěvatelé: | Nonlinear Solid Mechanics, Surface Technology and Tribology |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
0209 industrial biotechnology
Materials science UT-Gold-D Mechanical Engineering Forming processes 02 engineering and technology engineering.material Flattening Finite element method Surfaces Coatings and Films Contact force 020303 mechanical engineering & transports 020901 industrial engineering & automation 0203 mechanical engineering Coating visual_art visual_art.visual_art_medium engineering Composite material Deformation (engineering) Sheet metal Asperity (materials science) |
Zdroj: | Friction, 9, 840-855. Springer |
ISSN: | 2223-7690 |
DOI: | 10.1007/s40544-020-0444-6 |
Popis: | Understanding asperity flattening is vital for a reliable macro-scale modeling of friction and wear. In sheet metal forming processes, sheet surface asperities are deformed due to contact forces between the tools and the workpiece. In addition, as the sheet metal is strained while retaining the normal load, the asperity deformation increases significantly. Deformation of the asperities determines the real area of contact which influences the friction and wear at the tool-sheet metal contact. The real area of contact between two contacting rough surfaces depends on type of loading, material behavior, and topography of the contacting surfaces. In this study, an experimental setup is developed to investigate the effect of a combined normal load and sub-surface strain on real area of contact. Uncoated and zinc coated steel sheets (GI) with different coating thicknesses, surface topographies, and substrate materials are used in the experimental study. Finite element (FE) analyses are performed on measured surface profiles to further analyze the behavior observed in the experiments and to understand the effect of surface topography, and coating thickness on the evolution of the real area of contact. Finally, an analytical model is presented to determine the real area contact under combined normal load and sub-surface strain. The results show that accounting for combined normal load and sub-surface straining effects is necessary for accurate predictions of the real area of contact. |
Databáze: | OpenAIRE |
Externí odkaz: |