Library of Two-Dimensional Hybrid Lead Halide Perovskite Scintillator Crystals
Autor: | Christophe Dujardin, Francesco Maddalena, Cuong Dang, Marcin E. Witkowski, Aozhen Xie, Michał Makowski, Stuart Victor Springham, Winicjusz Drozdowski, Philippe Coquet, Muhammad Danang Birowosuto, Benoit Mahler |
---|---|
Přispěvatelé: | School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, CINTRA CNRS/NTU/THALES, UMI 3288, Institute of Physics, Nicolaus Copernicus University, Nicolaus Copernicus University [Toruń], Luminescence (LUMINESCENCE), Institut Lumière Matière [Villeurbanne] (ILM), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Nanyang Technological University [Singapour], CNRS International - NTU - Thales Research Alliance (CINTRA), THALES [France]-Nanyang Technological University [Singapour]-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), MOE2019-T1-002-087, Ministry of Education - Singapore, Thales CINTRA Funding |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Anions
Materials science Light General Chemical Engineering Halide 02 engineering and technology Scintillator 010402 general chemistry 01 natural sciences Crystals Condensed Matter::Materials Science [SPI]Engineering Sciences [physics] X-rays Materials Chemistry [CHIM]Chemical Sciences Perovskites Perovskite (structure) [PHYS]Physics [physics] Condensed Matter::Other business.industry General Chemistry 021001 nanoscience & nanotechnology 0104 chemical sciences Yield (chemistry) Optoelectronics 0210 nano-technology business |
Zdroj: | Chemistry of Materials Chemistry of Materials, American Chemical Society, 2020, 32 (19), pp.8530-8539. ⟨10.1021/acs.chemmater.0c02789⟩ Chemistry of Materials, 2020, 32 (19), pp.8530-8539. ⟨10.1021/acs.chemmater.0c02789⟩ |
ISSN: | 0897-4756 1520-5002 |
Popis: | International audience; Two-dimensional (2D) hybrid lead halide perovskites are potential candidates for high light yield scintillators as they have small band gaps between 3 and 4 eV and large exciton-binding energy. Here, we discuss the scintillation properties from a total of 11 organic/inorganic hybrid perovskite crystals with two already reported crystals, (PEA)2PbBr4 and (EDBE)PbBr4. Their photoluminescence and X-ray luminescence (XL) spectra are dominated by narrow and broad band emissions, and they correspond to free exciton and self-trapped exciton, respectively. The lifetimes derived from time-resolved XL strongly vary from 0.6 to 17.0 ns. These values make this type of compound among the fastest scintillators. For the light yield derived from the XL, we found that only (PEA)2PbBr4, (EDBE)PbBr4, and (BA)2PbBr4 crystals have light yields between 10,000 and 40,000 photons/MeV. The mechanisms for thermal quenching and afterglow are discussed in order to optimize the light yields. With gamma-ray excitation, we reported the best energy resolution of 7.7% at 662 keV with excellent proportionality. Finally, this study paves the way toward the ultimate high light yield and fast scintillators for medical and homeland security applications. |
Databáze: | OpenAIRE |
Externí odkaz: |