Approximation of null controls for semilinear heat equations using a least-squares approach

Autor: Arnaud Münch, Jérôme Lemoine, Irene Marín-Gayte
Přispěvatelé: Laboratoire de Mathématiques Blaise Pascal (LMBP), Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Departamento de Ecuaciones Differenciales y Analysis numérico [Sevilla] (EDAN), Facultad de Matemáticas, Géosciences Environnement Toulouse (GET), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico
Jazyk: angličtina
Rok vydání: 2020
Předmět:
0209 industrial biotechnology
Pure mathematics
Least-squares approach
Control and Optimization
Constructive proof
Mathematics::Analysis of PDEs
Fixed-point theorem
93E24 Keywords: Semilinear heat equation
010103 numerical & computational mathematics
02 engineering and technology
01 natural sciences
020901 industrial engineering & automation
Semilinear heat equation
FOS: Mathematics
AMS Classifications: 35Q30
Mathematics - Numerical Analysis
0101 mathematics
[MATH]Mathematics [math]
Finite set
Mathematics - Optimization and Control
Mathematics
1991 Mathematics Subject Classification.35K58
93B05
93E24

Null controllability
Null (mathematics)
Order (ring theory)
Numerical Analysis (math.NA)
least-squares method
Computational Mathematics
Control and Systems Engineering
Optimization and Control (math.OC)
Bounded function
Exponent
Heat equation
35Q30
93E24

[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
Zdroj: ESAIM: Control, Optimisation and Calculus of Variations
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2021, 27, pp.63. ⟨10.1051/cocv/2021062⟩
ESAIM: Control, Optimisation and Calculus of Variations, 2021, 27, pp.63. ⟨10.1051/cocv/2021062⟩
ESAIM: Control, Optimisation and Calculus of Variations, In press
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, inPress
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, In press
ISSN: 1292-8119
1262-3377
DOI: 10.1051/cocv/2021062⟩
Popis: The null distributed controllability of the semilinear heat equation ∂ty − Δy + g(y) = f 1ω assuming that g ∈ C1(ℝ) satisfies the growth condition lim sup|r|→∞g(r)∕(|r|ln3∕2|r|) = 0 has been obtained by Fernández-Cara and Zuazua (2000). The proof based on a non constructive fixed point theorem makes use of precise estimates of the observability constant for a linearized heat equation. Assuming that g′ is bounded and uniformly Hölder continuous on ℝ with exponent p ∈ (0, 1], we design a constructive proof yielding an explicit sequence converging strongly to a controlled solution for the semilinear equation, at least with order 1 + p after a finite number of iterations. The method is based on a least-squares approach and coincides with a globally convergent damped Newton method: it guarantees the convergence whatever be the initial element of the sequence. Numerical experiments in the one dimensional setting illustrate our analysis.
Databáze: OpenAIRE