Iterative reconstruction of a global metabolic model of Acinetobacter baylyi ADP1 using high-throughput growth phenotype and gene essentiality data
Autor: | Jean Weissenbach, Annett Kreimeyer, Véronique de Berardinis, David Vallenet, Serge Smidtas, Vincent Schächter, Cyril Combe, Marcel Salanoubat, François Le Fèvre, Maxime Durot |
---|---|
Přispěvatelé: | Genoscope - Centre national de séquençage [Evry] (GENOSCOPE), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Département Ingénierie Logiciels et Systèmes (DILS), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Génomique métabolique (UMR 8030), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université d'Évry-Val-d'Essonne (UEVE), VisAge (VisAge), VisAge, Structure et évolution des génomes (SEG), CNS-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Technologique (CEA) (DRT (CEA)) |
Jazyk: | angličtina |
Předmět: |
Systems biology
[SDV]Life Sciences [q-bio] Mutant Iterative reconstruction Computational biology Biology computer.software_genre Models Biological Sensitivity and Specificity User-Computer Interface 03 medical and health sciences Structural Biology Modelling and Simulation Throughput (business) Gene lcsh:QH301-705.5 Molecular Biology ComputingMilieux_MISCELLANEOUS 030304 developmental biology Internet 0303 health sciences Genes Essential Acinetobacter 030306 microbiology Applied Mathematics Reproducibility of Results Genome project Phenotype [SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] Computer Science Applications lcsh:Biology (General) Genes Bacterial Modeling and Simulation Mutation Mutation (genetic algorithm) Data mining computer Metabolic Networks and Pathways Software Research Article |
Zdroj: | BMC Systems Biology, Vol 2, Iss 1, p 85 (2008) BMC Systems Biology BMC Systems Biology, BioMed Central, 2008, 2 (1), pp.85. ⟨10.1186/1752-0509-2-85⟩ BMC Systems Biology, 2008, 2 (1), pp.85. ⟨10.1186/1752-0509-2-85⟩ |
ISSN: | 1752-0509 |
DOI: | 10.1186/1752-0509-2-85 |
Popis: | Background Genome-scale metabolic models are powerful tools to study global properties of metabolic networks. They provide a way to integrate various types of biological information in a single framework, providing a structured representation of available knowledge on the metabolism of the respective species. Results We reconstructed a constraint-based metabolic model of Acinetobacter baylyi ADP1, a soil bacterium of interest for environmental and biotechnological applications with large-spectrum biodegradation capabilities. Following initial reconstruction from genome annotation and the literature, we iteratively refined the model by comparing its predictions with the results of large-scale experiments: (1) high-throughput growth phenotypes of the wild-type strain on 190 distinct environments, (2) genome-wide gene essentialities from a knockout mutant library, and (3) large-scale growth phenotypes of all mutant strains on 8 minimal media. Out of 1412 predictions, 1262 were initially consistent with our experimental observations. Inconsistencies were systematically examined, leading in 65 cases to model corrections. The predictions of the final version of the model, which included three rounds of refinements, are consistent with the experimental results for (1) 91% of the wild-type growth phenotypes, (2) 94% of the gene essentiality results, and (3) 94% of the mutant growth phenotypes. To facilitate the exploitation of the metabolic model, we provide a web interface allowing online predictions and visualization of results on metabolic maps. Conclusion The iterative reconstruction procedure led to significant model improvements, showing that genome-wide mutant phenotypes on several media can significantly facilitate the transition from genome annotation to a high-quality model. |
Databáze: | OpenAIRE |
Externí odkaz: |