Curvilinear one-dimensional antiferromagnets

Autor: Denis D. Sheka, Ulrich K. Rößler, Artem V. Tomilo, Denys Makarov, Kostiantyn V. Yershov, Jürgen Fassbender, Denys Y Kononenko, Jeroen van den Brink, Oleksandr V. Pylypovskyi
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Nano Letters 20(2020)11, 8157-8162
arXiv:2005.05835 [cond-mat.mes-hall]: https://arxiv.org/abs/2005.05835
Popis: Antiferromagnets host exotic quasiparticles, support high frequency excitations and are key enablers of the prospective spintronic and spin-orbitronic technologies. Here, we propose a concept of a curvilinear antiferromagnetism where material responses can be tailored by a geometrical curvature without the need to adjust material parameters. We show that an intrinsically achiral one-dimensional (1D) curvilinear antiferromagnet behaves as a chiral helimagnet with geometrically tunable Dzyaloshinskii--Moriya interaction (DMI) and orientation of the N\'{e}el vector. The curvature-induced DMI results in the hybridization of spin wave modes and enables a geometrically-driven local minimum of the low frequency branch. This positions curvilinear 1D antiferromagnets as a novel platform for the realization of geometrically tunable chiral antiferromagnets for antiferromagnetic spin-orbitronics and fundamental discoveries in the formation of coherent magnon condensates in the momentum space.
Comment: 6 pages, 2 figures
Databáze: OpenAIRE