Extracellular Vesicle Identification Using Label-Free Surface-Enhanced Raman Spectroscopy: Detection and Signal Analysis Strategies
Autor: | Dongkwon Seo, Hyunku Shin, Yeonho Choi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Materials science
Pharmaceutical Science Nanotechnology 02 engineering and technology Review Exosomes Spectrum Analysis Raman Extracellular vesicles signal analysis Analytical Chemistry Cell Line lcsh:QD241-441 Pattern identification 03 medical and health sciences Extracellular Vesicles Mice Deep Learning Electromagnetic Fields lcsh:Organic chemistry Cell Line Tumor Drug Discovery Animals Cluster Analysis Humans Physical and Theoretical Chemistry Least-Squares Analysis Spectral data 030304 developmental biology Label free Titanium 0303 health sciences Signal processing Organic Chemistry Liquid Biopsy Extracellular vesicle Surface-enhanced Raman spectroscopy Surface Plasmon Resonance 021001 nanoscience & nanotechnology surface-enhanced Raman spectroscopy Nanostructures Chemistry (miscellaneous) Microscopy Electron Scanning Molecular Medicine Identification (biology) Gold 0210 nano-technology Biomarkers |
Zdroj: | Molecules Molecules, Vol 25, Iss 5209, p 5209 (2020) |
ISSN: | 1420-3049 |
Popis: | Extracellular vesicles (EVs) have been widely investigated as promising biomarkers for the liquid biopsy of diseases, owing to their countless roles in biological systems. Furthermore, with the notable progress of exosome research, the use of label-free surface-enhanced Raman spectroscopy (SERS) to identify and distinguish disease-related EVs has emerged. Even in the absence of specific markers for disease-related EVs, label-free SERS enables the identification of unique patterns of disease-related EVs through their molecular fingerprints. In this review, we describe label-free SERS approaches for disease-related EV pattern identification in terms of substrate design and signal analysis strategies. We first describe the general characteristics of EVs and their SERS signals. We then present recent works on applied plasmonic nanostructures to sensitively detect EVs and notable methods to interpret complex spectral data. This review also discusses current challenges and future prospects of label-free SERS-based disease-related EV pattern identification. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |