Periods of Modular GL2-type Abelian Varieties and p-adic Integration

Autor: Xavier Guitart, Marc Masdeu
Přispěvatelé: Universitat de Barcelona
Rok vydání: 2017
Předmět:
Zdroj: Dipòsit Digital de la UB
Universidad de Barcelona
Experimental Mathematics
Recercat. Dipósit de la Recerca de Catalunya
instname
Popis: Let F be a number field and N an integral ideal in its ring of integers. Let f be a modular newform over F of level Gamma0(N) with rational Fourier coefficients. Under certain additional conditions, Guitart-Masdeu-Sengun constructed a p-adic lattice which is conjectured to be the Tate lattice of an elliptic curve E whose L-function equals that of f. The aim of this note is to generalize this construction when the Hecke eigenvalues of f generate a number field of degree d >= 1, in which case the geometric object associated to f is expected to be, in general, an abelian variety A of dimension d. We also provide numerical evidence supporting the conjectural construction in the case of abelian surfaces.
27 pages. Final version, to appear in Experimental Mathematics
Databáze: OpenAIRE