Ultrafast Thermo-Optical Dynamics of Plasmonic Nanoparticles
Autor: | Francesco Banfi, Natalia Del Fatti, Fabrice Vallée, Fabio Medeghini, Marco Gandolfi, Aurélien Crut, Paolo Maioli, Tatjana Stoll |
---|---|
Přispěvatelé: | Università cattolica del Sacro Cuore [Brescia] (Unicatt), Laboratory forf Soft Matter and Biophysics, KU Leuven, Institut Lumière Matière [Villeurbanne] (ILM), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon |
Rok vydání: | 2018 |
Předmět: |
Materials science
Context (language use) Nanotechnology 02 engineering and technology Dielectric Quantum mechanics 01 natural sciences [SPI]Engineering Sciences [physics] Thermal conductivity 0103 physical sciences Thermal [CHIM]Chemical Sciences Interfacial thermal resistance Physical and Theoretical Chemistry 010306 general physics Nanoscopic scale [PHYS]Physics [physics] Plasmonic nanoparticles Ethanol 021001 nanoscience & nanotechnology Surfaces Coatings and Films Electronic Optical and Magnetic Materials Metrology General Energy Metals Gold 0210 nano-technology Nanospheres |
Zdroj: | Journal of Physical Chemistry C Journal of Physical Chemistry C, American Chemical Society, 2018, 122 (15), pp.8655-8666. ⟨10.1021/acs.jpcc.8b01875⟩ |
ISSN: | 1932-7455 1932-7447 |
DOI: | 10.1021/acs.jpcc.8b01875 |
Popis: | International audience; Time-resolved thermoplasmonics is emerging as the go-to technique for nanoscale thermal metrology. In this context, connecting the ultrafast optical response of nanoobjects to the correct thermal pathways is of paramount importance. We developed full thermo-optical models relating transient spectroscopy measurements, performed on metal nanoobjects in dielectric environments, to the overall system thermal dynamics. The models are applicable to small spherical nanoparticles embedded in a homogeneous matrix, following an analytical approach, and are expanded to include the cases of arbitrarily complex geometries and sizes relying on the finite-element method. These approaches are then exploited to rationalize several observations made in the context of previous time-resolved thermo-optical studies at the nanoscale. The present tools open the path for accurate retrieval of thermal parameters, notably the Kapitza resistance and the local environment thermal conductivity, from experiments. They also allow identifying the optimal parameters for selectively probing thermal dynamics of either a nanoobject or its nanoscale environment. |
Databáze: | OpenAIRE |
Externí odkaz: |